4 research outputs found

    Mifepristone, a blocker of glucocorticoid receptors, promotes photoreceptor death

    Get PDF
    PURPOSE: Glucocorticoids are best known by their protective effect on retinal photoreceptor damage. However, they could also be involved in photoreceptor homeostasis under basal, nonstressful conditions. Therefore, we aimed to study glucocorticoid-induced changes of survival-related molecules in male mice retinas under standard illumination conditions (12 hours light, ≤ 60 lux/12 h dark). METHODS: Male Balb-c mice were injected with dexamethasone (DEX), a selective glucocorticoid receptor α (GRα) agonist, its antagonist mifepristone (MFP), or both drugs (D+M) at noon. A group of mice was subjected to surgical adrenalectomy (AdrX). Retinas were studied by histology, immunohistochemistry, TUNEL procedure, and Western blotting at different periods after pharmacological or surgical intervention (6 hours, 48 hours, or 7 days). RESULTS: The antiapoptotic molecule Bcl-X(L) significantly increased 6 hours after DEX injection. By contrast, this molecule could no longer be found after MFP injection. At the same time, high levels of cleaved caspase-3 (CC-3) and Bax appeared in retinal extracts, and TUNEL(+) nuclei selectively showed in the outer nuclear layer (ONL). After MFP, retinal extracts also contained phosphorylated histone H2AX (p-H2AX), a marker of DNA breakage and repair. Loss of ONL nuclear rows and decrease of rhodopsin levels were evident 7 days after MFP administration. These changes were minimized when DEX was given together with MFP (D+M). In the absence of MFP, DEX increased Bcl-X(L) in every retinal layer, with a marked intensification in photoreceptor inner segments. Numerous TUNEL(+) nuclei rapidly appeared in the ONL after AdrX. CONCLUSIONS: A single dose of MFP induced selective photoreceptor damage in the absence of other environmental stressors. Because damage was prevented by DEX, and was reproduced by AdrX, our findings suggest that glucocorticoids play a critical role in photoreceptor survival.Fil: Cubilla, Marisa Angélica. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bermúdez, Vicente. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marquioni Ramella, Melisa Daniela. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bachor, Tomás Pedro. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Suburo, Angela Maria. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Sitagliptin protects proliferation of neural progenitor cells in diabetic mice

    Get PDF
    Sitagliptin (SIT) is a dipeptidyl peptidase-4 (DPP-4) inhibitor that enhances the effects of incretin hormones, such as Glucose-dependent Insulinotropic Peptide (also known as Gastric Inhibitory Polypeptide, GIP) and Glucagon-Like Peptide 1 (GLP-1). We have now evaluated the effect of SIT on proliferation of neural progenitors in diabetic mice. A condition resembling the non-obese type 2 diabetes mellitus (D2) was achieved by a combination of streptozotocin and nicotinamide (NA-STZ), whereas a type 1-like disease (D1) was provoked by STZ without NA. Nondiabetic mice received vehicle injections. Cell proliferation was estimated by bromodeoxyuridine (BrdU) incorporation in two different regions of the subventricular zone (SVZ), the largest reserve of neural stem cells in the adult brain. SIT treatment did not modify the high fasting blood glucose (BG) levels and intraperitoneal glucose tolerance test (IPGTT) of D1 mice. By contrast, in D2 mice, SIT treatment significantly reduced BG and IPGTT. Both D1 and D2 mice showed a substantial reduction of BrdU labeling in the SVZ. Remarkably, SIT treatment improved BrdU labeling in both conditions. Our findings suggest that SIT would protect proliferation of neural progenitor cells even in the presence of non-controlled diabetic alterations.Fil: Bachor, Tomás Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Marquioni Ramella, Melisa Daniela. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Suburo, Angela Maria. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Early ciliary and prominin-1 dysfunctions precede neurogenesis impairment in a mouse model of type 2 diabetes

    Get PDF
    Diabetes mellitus (DM) is reaching epidemic conditions worldwide and increases the risk for cognition impairment and dementia. Here, we postulated that progenitors in adult neurogenic niches might be particularly vulnerable. Therefore, we evaluated the different components of the mouse subventricular zone (SVZ) during the first week after chemical induction of type 1 and type 2 diabetes-like (T1DM and T2DM) conditions. Surprisingly, only T2DM mice showed SVZ damage. The initial lesions were localized to ependymal cilia, which appeared disorientated and clumped together. In addition, they showed delocalization of the ciliary membrane protein prominin-1. Impairment of neuroprogenitor proliferation, neurogenic marker abnormalities and ectopic migration of neuroblasts were found at a later stage. To our knowledge, our data describe for the first time such an early impact of T2DM on the SVZ. This is consistent with clinical data indicating that brain damage in T2DM patients differs from that in T1DM patients.Fil: Bachor, Tomás Pedro. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Karbanová, Jana. Technische Universität Dresden; AlemaniaFil: Büttner, Edgar. Technische Universität Dresden; AlemaniaFil: Bermúdez, Vicente. Technische Universität Dresden; Alemania. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Marquioni Ramella, Melisa Daniela. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Carmeliet, Peter. Katholikie Universiteit Leuven; BélgicaFil: Corbeil, Denis. Katholikie Universiteit Leuven; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Suburo, Angela Maria. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentin
    corecore