229 research outputs found

    A new mouse model for the neurodevelopmental ciliopathy Joubert syndrome

    Full text link
    Recent recognition of the key role of primary cilia in orchestrating human development and of the dire consequences of their dysfunction on human health has placed this small organelle in the spotlight. While the causal link between mutations in ciliary genes and central nervous system malformations and dysfunction is well established, the mechanisms by which primary cilia dysfunction acts on development and function of the CNS remain partly unknown. The recent article by Bashford and Subramanian in The Journal of Pathology describes a new mouse model for the neurodevelopmental ciliopathy Joubert syndrome, supporting a role for ciliary-mediated Hedgehog signaling on proliferation, survival, and differentiation of cerebellar granule cell progenitors. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Génétique médicale: Conséquences du diagnostic ­génétique «next generation»

    Full text link
    Les nouvelles technologies de séquençage transforment fondamentalement notre compréhension de la génétique, en particulier dans le cas des maladies syndromiques. Sur l’exemple des ciliopathies, le présent article illustre les conséquences de ces progrès, non seulement pour les généticiens, mais aussi pour toutes les disciplines médicales et en fin de compte pour nos patients

    Challenges for the implementation of next generation sequencing-based expanded carrier screening: Lessons learned from the ciliopathies

    Full text link
    Next generation sequencing (NGS) can detect carrier status for rare recessive disorders, informing couples about their reproductive risk. The recent ACMG recommendations support offering NGS-based carrier screening (NGS-CS) in an ethnic and population-neutral manner for all genes that have a carrier frequency >1/200 (based on GnomAD). To evaluate current challenges for NGS-CS, we focused on the ciliopathies, a well-studied group of rare recessive disorders. We analyzed 118 ciliopathy genes by whole exome sequencing in ~400 healthy local individuals and ~1000 individuals from the UK1958-birth cohort. We found 20% of healthy individuals (1% of couples) to be carriers of reportable variants in a ciliopathy gene, while 50% (4% of couples) carry variants of uncertain significance (VUS). This large proportion of VUS is partly explained by the limited utility of the ACMG/AMP variant-interpretation criteria in healthy individuals, where phenotypic match or segregation criteria cannot be used. Most missense variants are thus classified as VUS and not reported, which reduces the negative predictive value of the screening test. We show how gene-specific variation patterns and structural protein information can help prioritize variants most likely to be disease-causing, for (future) functional assays. Even when considering only strictly pathogenic variants, the observed carrier frequency is substantially higher than expected based on estimated disease prevalence, challenging the 1/200 carrier frequency cut-off proposed for choice of genes to screen. Given the challenges linked to variant interpretation in healthy individuals and the uncertainties about true carrier frequencies, genetic counseling must clearly disclose these limitations of NGS-CS

    Deleterious, protein-altering variants in the X-linked transcriptional coregulator ZMYM3 in 22 individuals with a neurodevelopmental delay phenotype

    Full text link
    Neurodevelopmental disorders (NDDs) often result from highly penetrant variation in one of many genes, including genes not yet characterized. Using the MatchMaker Exchange, we assembled a cohort of 22 individuals with rare, protein-altering variation in the X-linked transcriptional coregulator gene ZMYM3. Most (n=19) individuals were males; 15 males had maternally-inherited alleles, three of the variants in males arose de novo, and one had unknown inheritance. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n=21) are missense, two of which are recurrent. Three unrelated males were identified with inherited variation at R441, a site at which variation has been previously reported in NDD-affected males, and two individuals have de novo variation at R1294. All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is highly expressed in the brain, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one mutant, ZMYM3R1274W, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to support a conclusive causative role for variation in ZMYM3 in disease, the totality of the evidence, including the presence of recurrent variation, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally-confirmed functional effects, strongly supports ZMYM3 as a novel NDD gene

    Publisher Correction: The ciliopathy protein TALPID3/KIAA0586 acts upstream of Rab8 activation in zebrafish photoreceptor outer segment formation and maintenance

    Full text link
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors

    Full text link
    Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane

    TMEM218 dysfunction causes ciliopathies, including Joubert and Meckel syndromes.

    Get PDF
    The Joubert-Meckel syndrome spectrum is a continuum of recessive ciliopathy conditions caused by primary cilium dysfunction. The primary cilium is a microtubule-based, antenna-like organelle that projects from the surface of most human cell types, allowing them to respond to extracellular signals. The cilium is partitioned from the cell body by the transition zone, a known hotspot for ciliopathy-related proteins. Despite years of Joubert syndrome (JBTS) gene discovery, the genetic cause cannot be identified in up to 30% of individuals with JBTS, depending on the cohort, sequencing method, and criteria for pathogenic variants. Using exome and targeted sequencing of 655 families with JBTS, we identified three individuals from two families harboring biallelic, rare, predicted-deleterious missense TMEM218 variants. Via MatchMaker Exchange, we identified biallelic TMEM218 variants in four additional families with ciliopathy phenotypes. Of note, four of the six families carry missense variants affecting the same highly conserved amino acid position 115. Clinical features included the molar tooth sign (N = 2), occipital encephalocele (N = 5, all fetuses), retinal dystrophy (N = 4, all living individuals), polycystic kidneys (N = 2), and polydactyly (N = 2), without liver involvement. Combined with existing functional data linking TMEM218 to ciliary transition zone function, our human genetic data make a strong case for TMEM218 dysfunction as a cause of ciliopathy phenotypes including JBTS with retinal dystrophy and Meckel syndrome. Identifying all genetic causes of the Joubert-Meckel spectrum enables diagnostic testing, prognostic and recurrence risk counseling, and medical monitoring, as well as work to delineate the underlying biological mechanisms and identify targets for future therapies

    Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish

    Get PDF
    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport

    Prenatally diagnosed distal 16p11.2 microdeletion with a novel association with congenital diaphragmatic hernia: a case report

    Get PDF
    A prenatal case presenting with congenital diaphragmatic hernia (CDH) and distal 16p11.2 microdeletion suggests two possible causative hypotheses: (1) a functional effect of chromatin loopings between the distal and the proximal 16p11.2 microdeletion traits, associated with CHD; (2) a possible role of ATP2A1, a deleted gene involved in diaphragm development
    • …
    corecore