5 research outputs found

    Supplemental Vitamins and Minerals for CVD Prevention and Treatment

    Get PDF
    The authors identified individual randomized controlled trials from previous meta-analyses and additional searches, and then performed meta-analyses on cardiovascular disease outcomes and all-cause mortality. The authors assessed publications from 2012, both before and including the U.S. Preventive Service Task Force review. Their systematic reviews and meta-analyses showed generally moderate- or low-quality evidence for preventive benefits (folic acid for total cardiovascular disease, folic acid and B-vitamins for stroke), no effect (multivitamins, vitamins C, D, β-carotene, calcium, and selenium), or increased risk (antioxidant mixtures and niacin [with a statin] for all-cause mortality). Conclusive evidence for the benefit of any supplement across all dietary backgrounds (including deficiency and sufficiency) was not demonstrated; therefore, any benefits seen must be balanced against possible risks

    Organic Chain Length Effect on Trap States of Lead Halide Perovskite Scintillators

    No full text
    Scintillators fabricated from organic–inorganic layered perovskites have attracted wide attention due to their excellent properties, including fast decay times, superior light yield, and high exciton binding energy. In relation to their optoelectronic properties, hybrid organic–inorganic perovskites are known for their tunability, which could be manipulated by modifying the organic cations. In this study, we investigate the optical and scintillation properties of lead halide perovskites A2PbBr4, where A vary from amylammonium (AA), hexylammonium (HA), octylammonium (OA), and benzylammonium (BZA) organic ligands. Photoluminescence (PL) spectra display dual peaks due to surface and bulk trap states contributions, while fast average decay times from time-resolved photoluminescence (TRPL) for all samples are within the range of 0.69 ± 0.11–0.99 ± 0.13 ns. The optical band gap of these hybrid perovskites is within ∼3 eV range, which fulfill the criteria of promising scintillators. Radioluminescence (RL) spectra show negative thermal quenching behavior (NTQ) in all samples, with the AA2PbBr4 peak intensity appearing at relatively lower temperature compared to other samples. Thermoluminescence (TL) measurement reveals trap-free states in AA2PbBr4, while other samples possess shallow traps (<40 meV) as well as low trap density, which is beneficial for fast-decay scintillators, X-ray detection and energy conversion for solar cells. Overall, our results demonstrate that the extension of linear organic chains in lead-based perovskite is a deterministic strategy for a fast response hybrid-based scintillator to date

    Organic Chain Length Effect on Trap States of Lead Halide Perovskite Scintillators

    No full text
    Scintillators fabricated from organic–inorganic layered perovskites have attracted wide attention due to their excellent properties, including fast decay times, superior light yield, and high exciton binding energy. In relation to their optoelectronic properties, hybrid organic–inorganic perovskites are known for their tunability, which could be manipulated by modifying the organic cations. In this study, we investigate the optical and scintillation properties of lead halide perovskites A2PbBr4, where A vary from amylammonium (AA), hexylammonium (HA), octylammonium (OA), and benzylammonium (BZA) organic ligands. Photoluminescence (PL) spectra display dual peaks due to surface and bulk trap states contributions, while fast average decay times from time-resolved photoluminescence (TRPL) for all samples are within the range of 0.69 ± 0.11–0.99 ± 0.13 ns. The optical band gap of these hybrid perovskites is within ∼3 eV range, which fulfill the criteria of promising scintillators. Radioluminescence (RL) spectra show negative thermal quenching behavior (NTQ) in all samples, with the AA2PbBr4 peak intensity appearing at relatively lower temperature compared to other samples. Thermoluminescence (TL) measurement reveals trap-free states in AA2PbBr4, while other samples possess shallow traps (<40 meV) as well as low trap density, which is beneficial for fast-decay scintillators, X-ray detection and energy conversion for solar cells. Overall, our results demonstrate that the extension of linear organic chains in lead-based perovskite is a deterministic strategy for a fast response hybrid-based scintillator to date

    Organic Chain Length Effect on Trap States of Lead Halide Perovskite Scintillators

    No full text
    Scintillators fabricated from organic–inorganic layered perovskites have attracted wide attention due to their excellent properties, including fast decay times, superior light yield, and high exciton binding energy. In relation to their optoelectronic properties, hybrid organic–inorganic perovskites are known for their tunability, which could be manipulated by modifying the organic cations. In this study, we investigate the optical and scintillation properties of lead halide perovskites A2PbBr4, where A vary from amylammonium (AA), hexylammonium (HA), octylammonium (OA), and benzylammonium (BZA) organic ligands. Photoluminescence (PL) spectra display dual peaks due to surface and bulk trap states contributions, while fast average decay times from time-resolved photoluminescence (TRPL) for all samples are within the range of 0.69 ± 0.11–0.99 ± 0.13 ns. The optical band gap of these hybrid perovskites is within ∼3 eV range, which fulfill the criteria of promising scintillators. Radioluminescence (RL) spectra show negative thermal quenching behavior (NTQ) in all samples, with the AA2PbBr4 peak intensity appearing at relatively lower temperature compared to other samples. Thermoluminescence (TL) measurement reveals trap-free states in AA2PbBr4, while other samples possess shallow traps (<40 meV) as well as low trap density, which is beneficial for fast-decay scintillators, X-ray detection and energy conversion for solar cells. Overall, our results demonstrate that the extension of linear organic chains in lead-based perovskite is a deterministic strategy for a fast response hybrid-based scintillator to date

    Organic Chain Length Effect on Trap States of Lead Halide Perovskite Scintillators

    No full text
    Scintillators fabricated from organic–inorganic layered perovskites have attracted wide attention due to their excellent properties, including fast decay times, superior light yield, and high exciton binding energy. In relation to their optoelectronic properties, hybrid organic–inorganic perovskites are known for their tunability, which could be manipulated by modifying the organic cations. In this study, we investigate the optical and scintillation properties of lead halide perovskites A2PbBr4, where A vary from amylammonium (AA), hexylammonium (HA), octylammonium (OA), and benzylammonium (BZA) organic ligands. Photoluminescence (PL) spectra display dual peaks due to surface and bulk trap states contributions, while fast average decay times from time-resolved photoluminescence (TRPL) for all samples are within the range of 0.69 ± 0.11–0.99 ± 0.13 ns. The optical band gap of these hybrid perovskites is within ∼3 eV range, which fulfill the criteria of promising scintillators. Radioluminescence (RL) spectra show negative thermal quenching behavior (NTQ) in all samples, with the AA2PbBr4 peak intensity appearing at relatively lower temperature compared to other samples. Thermoluminescence (TL) measurement reveals trap-free states in AA2PbBr4, while other samples possess shallow traps (<40 meV) as well as low trap density, which is beneficial for fast-decay scintillators, X-ray detection and energy conversion for solar cells. Overall, our results demonstrate that the extension of linear organic chains in lead-based perovskite is a deterministic strategy for a fast response hybrid-based scintillator to date
    corecore