29 research outputs found

    Orthovoltage intraoperative radiation therapy for pancreatic adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To analyze the outcomes of patients from a single institution treated with surgery and orthovoltage intraoperative radiotherapy (IORT) for pancreatic adenocarcinoma.</p> <p>Methods</p> <p>We retrospectively reviewed 23 consecutive patients from 1990-2001 treated with IORT to 23 discrete sites with median and mean follow up of 6.5 and 21 months, respectively. Most tumors were located in the head of the pancreas (83%) and sites irradiated included: tumor bed (57%), vessels (26%), both the tumor bed/vessels (13%) and other (4%). The majority of patients (83%) had IORT at the time of their definitive surgery. Three patients had preoperative chemoradiation (13%). Orthovoltage X-rays (200-250 kVp) were employed via individually sized and beveled cone applicators. Additional mean clinical characteristics include: age 64 (range 41-81); tumor size 4 cm (range 1.4-11); and IORT dose 1106 cGy (range 600-1500). Post-operative external beam radiation (EBRT) or chemotherapy was given to 65% and 76% of the assessable patients, respectively. Outcomes measured were infield control (IFC), loco-regional control (LRC), distant metastasis free survival (DMFS), overall survival (OS) and treatment-related complications.</p> <p>Results</p> <p>Kaplan-Meier (KM) 2-year IFC, LRC, DMFS and OS probabilities for the whole group were 83%, 61%, 26%, and 27%, respectively. Our cohort had three grade 3-5 complications associated with treatment (surgery and IORT).</p> <p>Conclusions</p> <p>Orthovoltage IORT following tumor reductive surgery is reasonably well tolerated and seems to confer in-field control in carefully selected patients. However, distant metastases remain the major problem for patients with pancreatic adenocarcinoma.</p

    A quantitative PCR method to detect blood microRNAs associated with tumorigenesis in transgenic mice

    Get PDF
    MicroRNA (miRNA) dysregulation frequently occurs in cancer. Analysis of whole blood miRNA in tumor models has not been widely reported, but could potentially lead to novel assays for early detection and monitoring of cancer. To determine whether miRNAs associated with malignancy could be detected in the peripheral blood, we used real-time reverse transcriptase-PCR to determine miRNA profiles in whole blood obtained from transgenic mice with c-MYC-induced lymphoma, hepatocellular carcinoma and osteosarcoma. The PCR-based assays used in our studies require only 10 nanograms of total RNA, allowing serial mini-profiles (20 – 30 miRNAs) to be carried out on individual animals over time. Blood miRNAs were measured from mice at different stages of MYC-induced lymphomagenesis and regression. Unsupervised hierarchical clustering of the data identified specific miRNA expression profiles that correlated with tumor type and stage. The miRNAs found to be altered in the blood of mice with tumors frequently reverted to normal levels upon tumor regression. Our results suggest that specific changes in blood miRNA can be detected during tumorigenesis and tumor regression

    A large peptidome dataset improves HLA class I epitope prediction across most of the human population

    Full text link
    Published in final edited form as: Nat Biotechnol. 2020 February ; 38(2): 199–209. doi:10.1038/s41587-019-0322-9.Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.P01 CA229092 - NCI NIH HHS; P50 CA101942 - NCI NIH HHS; T32 HG002295 - NHGRI NIH HHS; T32 CA009172 - NCI NIH HHS; U24 CA224331 - NCI NIH HHS; R21 CA216772 - NCI NIH HHS; R01 CA155010 - NCI NIH HHS; U01 CA214125 - NCI NIH HHS; T32 CA207021 - NCI NIH HHS; R01 HL103532 - NHLBI NIH HHS; U24 CA210986 - NCI NIH HHSAccepted manuscrip

    Combined Inactivation of MYC and K-Ras Oncogenes Reverses Tumorigenesis in Lung Adenocarcinomas and Lymphomas

    Get PDF
    Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as "oncogene-addiction." However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment.To examine how the MYC and K-ras(G12D) oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma. The ability of MYC and K-ras(G12D) to cooperate for tumorigenesis and the ability of the inactivation of these oncogenes to result in tumor regression depended upon the specific tissue context. MYC-, K-ras(G12D)- or MYC/K-ras(G12D)-induced lymphomas exhibited sustained regression upon the inactivation of either or both oncogenes. However, in marked contrast, MYC-induced lung tumors failed to regress completely upon oncogene inactivation; whereas K-ras(G12D)-induced lung tumors regressed completely. Importantly, the combined inactivation of both MYC and K-ras(G12D) resulted more frequently in complete lung tumor regression. To account for the different roles of MYC and K-ras(G12D) in maintenance of lung tumors, we found that the down-stream mediators of K-ras(G12D) signaling, Stat3 and Stat5, are dephosphorylated following conditional K-ras(G12D) but not MYC inactivation. In contrast, Stat3 becomes dephosphorylated in lymphoma cells upon inactivation of MYC and/or K-ras(G12D). Interestingly, MYC-induced lung tumors that failed to regress upon MYC inactivation were found to have persistent Stat3 and Stat5 phosphorylation.Taken together, our findings point to the importance of the K-Ras and associated down-stream Stat effector pathways in the initiation and maintenance of lymphomas and lung tumors. We suggest that combined targeting of oncogenic pathways is more likely to be effective in the treatment of lung cancers and lymphomas

    Arresting the Inflammatory Drive of Chronic Lymphocytic Leukemia with Ibrutinib

    No full text

    05_C6D1

    No full text

    04_Relapse

    No full text

    Co-evolving JAK2V617F+ relapsed AML and donor T cells with PD-1 blockade after stem cell transplantation: an index case (CyTOF)

    No full text
    Integrated single cell analysis of serial peripheral blood samples of relapsed JAK2V617F+ AML after allogeneic stem cell transplantation with transient response to PD-1 blockade using scRNA-seq, scATAC-seq and CyTOF: CyTOF dat
    corecore