63 research outputs found

    Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants.</p> <p>Methods</p> <p>We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c).</p> <p>Results</p> <p>The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3).</p> <p>Conclusion</p> <p>Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis.</p

    A novel splice variant of the stem cell marker LGR5/GPR49 is correlated with the risk of tumor-related death in soft-tissue sarcoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human leucine-rich, repeat-containing G protein-coupled receptor (LGR) 5, also called GPR49, is a marker of stem cells in adult intestinal epithelium, stomach and hair follicles. LGR5/GPR49 is overexpressed in tumors of the colon, ovary and liver and in basal cell carcinomas. Moreover, an expression in skeletal muscle tissues was also detected. However, there has been no investigation regarding the expression and function of LGR5/GPR49 in soft-tissue sarcomas (STS) yet.</p> <p>Methods</p> <p>Seventy-seven frozen tumor samples from adult STS patients were studied using quantitative real-time TaqMan™ PCR analysis. The mRNA levels of wild type <it>LGR5/GPR49 </it>and a newly identified splice variant of <it>LGR5/GPR49 </it>lacking exon 5 (that we called <it>GPR49Δ5</it>) were quantified.</p> <p>Results</p> <p>A low mRNA expression level of <it>GPR49Δ5</it>, but not wild type <it>LGR5/GPR49</it>, was significantly correlated with a poor prognosis for the disease-associated survival of STS patients (RR = 2.6; P = 0.026; multivariate Cox's regression hazard analysis). Furthermore, a low mRNA expression level of <it>GPR49Δ5 </it>was associated with a shorter recurrence-free survival (P = 0.043). However, tumor onset in patients with a lower expression level of <it>GPR49Δ5 </it>mRNA occurred 7.5 years later (P = 0.04) than in patients with a higher tumor level of <it>GPR49Δ5 </it>mRNA.</p> <p>Conclusion</p> <p>An attenuated mRNA level of the newly identified transcript variant <it>GPR49Δ5 </it>is a negative prognostic marker for disease-associated and recurrence-free survival in STS patients. Additionally, a lower <it>GPR49Δ5 </it>mRNA level is associated with a later age of tumor onset. A putative role of <it>GPR49Δ5 </it>expression in tumorigenesis and tumor progression of soft tissue sarcomas is suggested.</p

    Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteopontin (OPN) is a secreted glycophosphoprotein that is overexpressed in various tumors, and high levels of OPN have been associated with poor prognosis of cancer patients. In patients with head and neck cancer, high OPN plasma levels have been associated with poor prognosis following radiotherapy. Since little is known about the relationship between OPN expression and radiosensitivity, we investigated the cellular and radiation induced effects of OPN siRNA in human MDA-MB-231 breast cancer cells.</p> <p>Methods</p> <p>MDA-MB-231 cells were transfected with OPN-specific siRNAs and irradiated after 24 h. To verify the OPN knockdown, we measured the OPN mRNA and protein levels using qRT-PCR and Western blot analysis. Furthermore, the functional effects of OPN siRNAs were studied by assays to assess clonogenic survival, migration and induction of apoptosis.</p> <p>Results</p> <p>Treatment of MDA-MB-231 cells with OPN siRNAs resulted in an 80% decrease in the OPN mRNA level and in a decrease in extracellular OPN protein level. Transfection reduced clonogenic survival to 42% (p = 0.008), decreased the migration rate to 60% (p = 0.15) and increased apoptosis from 0.3% to 1.7% (p = 0.04). Combination of OPN siRNA and irradiation at 2 Gy resulted in a further reduction of clonogenic survival to 27% (p < 0.001), decreased the migration rate to 40% (p = 0.03) and increased apoptosis to 4% (p < 0.005). Furthermore, OPN knockdown caused a weak radiosensitization with an enhancement factor of 1.5 at 6 Gy (p = 0.09) and a dose modifying factor (DMF<sub>10</sub>) of 1.1.</p> <p>Conclusion</p> <p>Our results suggest that an OPN knockdown improves radiobiological effects in MDA-MB-231 cells. Therefore, OPN seems to be an attractive target to improve the effectiveness of radiotherapy.</p

    Elevated tumor and serum levels of the hypoxia-associated protein osteopontin are associated with prognosis for soft tissue sarcoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteopontin (OPN) overexpression is correlated with a poor prognosis for tumor patients. However, only a few studies investigated the prognostic impact of expression of OPN in soft tissue sarcomas (STS) yet.</p> <p>Methods</p> <p>This study is based on tumor and serum samples from 93 adult STS patients. We investigated OPN protein levels in serum (n = 86) and tumor tissue (n = 80) by ELISA and OPN mRNA levels in tumor tissue (n = 68) by quantitative real-time PCR.</p> <p>Results</p> <p>No correlation was found between OPN levels in serum and tumor tissue. Moreover, an elevated OPN protein level in the serum was significantly associated with clinical parameters such as higher stage (p = 0.004), higher grade (p = 0.003), subtype (p = 0.002) and larger tumor size (p = 0.03). OPN protein levels in the tumor tissue were associated with higher stage (p = 0.06), higher grade (p = 0.003), subtype (p = 0.07) and an increased rate of relapse (p = 0.02). In addition, using a Cox's proportional hazards regression model, we found that an elevated OPN protein level in the serum and tumor tissue extracts is a significant negative prognostic factor for patients with STS. The relative risks of tumor-related death were 2.2 (p < 0.05) and 3.7 (p = 0.01), respectively.</p> <p>Conclusion</p> <p>Our data suggest OPN protein in serum as well as in tumor tissue extracts is an important prognostic factor for soft tissue sarcoma patients.</p

    Causes and Consequences of A Glutamine Induced Normoxic HIF1 Activity for the Tumor Metabolism

    Get PDF
    The transcription factor hypoxia-inducible factor 1 (HIF1) is the crucial regulator of genes that are involved in metabolism under hypoxic conditions, but information regarding the transcriptional activity of HIF1 in normoxic metabolism is limited. Different tumor cells were treated under normoxic and hypoxic conditions with various drugs that affect cellular metabolism. HIF1ff was silenced by siRNA in normoxic/hypoxic tumor cells, before RNA sequencing and bioinformatics analyses were performed while using the breast cancer cell line MDA-MB-231 as a model. Differentially expressed genes were further analyzed and validated by qPCR, while the activity of the metabolites was determined by enzyme assays. Under normoxic conditions, HIF1 activity was significantly increased by (i) glutamine metabolism, which was associated with the release of ammonium, and it was decreased by (ii) acetylation via acetyl CoA synthetase (ACSS2) or ATP citrate lyase (ACLY), respectively, and (iii) the presence of L-ascorbic acid, citrate, or acetyl-CoA. Interestingly, acetylsalicylic acid, ibuprofen, L-ascorbic acid, and citrate each significantly destabilized HIF1ff only under normoxia. The results from the deep sequence analyses indicated that, in HIF1-siRNA silenced MDA-MB-231 cells, 231 genes under normoxia and 1384 genes under hypoxia were transcriptionally significant deregulated in a HIF1-dependent manner. Focusing on glycolysis genes, it was confirmed that HIF1 significantly regulated six normoxic and 16 hypoxic glycolysis-associated gene transcripts. However, the results from the targeted metabolome analyses revealed that HIF1 activity affected neither the consumption of glucose nor the release of ammonium or lactate; however, it significantly inhibited the release of the amino acid alanine. This study comprehensively investigated, for the first time, how normoxic HIF1 is stabilized, and it analyzed the possible function of normoxic HIF1 in the transcriptome and metabolic processes of tumor cells in a breast cancer cell model. Furthermore, these data imply that HIF1 compensates for the metabolic outcomes of glutaminolysis and, subsequently, theWarburg effect might be a direct consequence of the altered amino acid metabolism in tumor cells

    Expression of survivin detected by immunohistochemistry in the cytoplasm and in the nucleus is associated with prognosis of leiomyosarcoma and synovial sarcoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin, a member of the inhibitor of apoptosis-protein family suppresses apoptosis and regulates cell division. It is strongly overexpressed in the vast majority of cancers. We were interested if survivin detected by immunohistochemistry has prognostic relevance especially for patients of the two soft tissue sarcoma entities leiomyosarcoma and synovial sarcoma.</p> <p>Methods</p> <p>Tumors of leiomyosarcoma (n = 24) and synovial sarcoma patients (n = 26) were investigated for their expression of survivin by immunohistochemistry. Survivin expression was assessed in the cytoplasm and the nucleus of tumor cells using an immunoreactive scoring system (IRS).</p> <p>Results</p> <p>We detected a survivin expression (IRS > 2) in the cytoplasm of 20 leiomyosarcomas and 22 synovial sarcomas and in the nucleus of 12 leiomyosarcomas and 9 synovial sarcomas, respectively. There was no significant difference between leiomyosarcoma and synovial sarcoma samples in their cytoplasmic or nuclear expression of survivin. Next, all sarcoma patients were separated in four groups according to their survivin expression in the cytoplasm and in the nucleus: group 1: negative (IRS 0 to 2); group 2: weak (IRS 3 to 4); group 3: moderate (IRS 6 to 8); group 4: strong (IRS 9 to 12). In a multivariate Cox's regression hazard analysis survivin expression detected in the cytoplasm or in the nucleus was significantly associated with overall survival of patients in group 3 (RR = 5.7; P = 0.004 and RR = 5.7; P = 0.022, respectively) compared to group 2 (reference). Patients whose tumors showed both a moderate/strong expression of survivin in the cytoplasm and a moderate expression of survivin in the nucleus (in both compartments IRS ≥ 6) possessed a 24.8-fold increased risk of tumor-related death (P = 0.003) compared to patients with a weak expression of survivin both in the cytoplasm and in the nucleus.</p> <p>Conclusion</p> <p>Survivin protein expression in the cytoplasma and in the nucleus detected by immunohistochemistry is significantly associated with prognosis of leiomyosarcoma and synovial sarcoma patients.</p

    HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma.</p> <p>Methods</p> <p>In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy) or hypoxic (2-15 Gy) conditions.</p> <p>Results</p> <p>Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF<sub>10</sub>: 1.35 and 1.18) and U343MG (DMF<sub>10</sub>: 1.78 and 1.48). However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF<sub>10</sub>: 0.86 and 1.35) and U343MG (DMF<sub>10</sub>: 1.33 and 1.02) cells.</p> <p>Conclusions</p> <p>Results from this <it>in vitro </it>study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.</p

    Combined mRNA expression levels of members of the urokinase plasminogen activator (uPA) system correlate with disease-associated survival of soft-tissue sarcoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the urokinase-type plasminogen activator (uPA) system are up-regulated in various solid malignant tumors. High antigen levels of uPA, its inhibitor PAI-1 and its receptor uPAR have recently been shown to be associated with poor prognosis in soft-tissue sarcoma (STS) patients. However, the mRNA expression of uPA system components has not yet been comprehensively investigated in STS patients.</p> <p>Methods</p> <p>The mRNA expression level of uPA, PAI-1, uPAR and an uPAR splice variant, uPAR-del4/5, was analyzed in tumor tissue from 78 STS patients by quantitative PCR.</p> <p>Results</p> <p>Elevated mRNA expression levels of PAI-1 and uPAR-del4/5 were significantly associated with clinical parameters such as histological subtype (<it>P </it>= 0.037 and <it>P </it>< 0.001, respectively) and higher tumor grade (<it>P </it>= 0.017 and <it>P </it>= 0.003, respectively). In addition, high uPAR-del4/5 mRNA values were significantly related to higher tumor stage of STS patients (<it>P </it>= 0.031). On the other hand, mRNA expression of uPA system components was not significantly associated with patients' survival. However, in STS patients with complete tumor resection (R0), high PAI-1 and uPAR-del4/5 mRNA levels were associated with a distinctly increased risk of tumor-related death (RR = 6.55, <it>P </it>= 0.054 and RR = 6.00, <it>P </it>= 0.088, respectively). Strikingly, R0 patients with both high PAI-1 and uPAR-del4/5 mRNA expression levels showed a significant, 19-fold increased risk of tumor-related death (<it>P </it>= 0.044) compared to the low expression group.</p> <p>Conclusion</p> <p>Our results suggest that PAI-1 and uPAR-del4/5 mRNA levels may add prognostic information in STS patients with R0 status and distinguish a subgroup of R0 patients with low PAI-1 and/or low uPAR-del4/5 values who have a better outcome compared to patients with high marker levels.</p

    Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied.</p> <p>Methods</p> <p>In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses.</p> <p>Results</p> <p>Under normoxic conditions, a half maximal inhibitory concentration (IC<sub>50</sub>) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions.</p> <p>Conclusion</p> <p>Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.</p
    corecore