5 research outputs found

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    A Self monitoring, Adaptative and Resource Efficient Approach for Improving QoS in Wireless Sensor Networks

    No full text
    International audienceIn Wireless Sensor Networks (WSNs), performance and reliability depend on the fault tolerance scheme used in the system. Fault diagnosis is an important part of fault tolerance. An effective diagnosis tool helps network administrators clearly monitor, manage, and troubleshoot the performance of the network. However, the design of online fault diagnosis is crucial in WSNs since many faults can easily happen and propagate. Besides, fault diagnosis put extra burden on the sensor node and it will also consume extra resources of the sensor nodes. Thus, in order to guarantee the network quality of service, it is essential for WSNs to be able to diagnosis faults efficiently. In this paper, we propose an adaptive and efficient approach for fault diagnosis in WSN called (SMART). SMART is a layer independent fault diagnosis service for WSNs. The presented service focuses on diagnosis two types of failures that are likely to happen in WSN deployments which are the node failure due to energy depletion, and the link failure due to poor connectivity with neighbors. From the design view, SMART provides to the application many tunable parameters that make it suitable for various deployment needs: energy-robustness-detection latency tradeoffs, tolerable packet loss, reports frequency etc. Simulation results prove that SMART is resource efficient while providing satisfactory detection and diagnosis accuracy

    A Self monitoring, Adaptative and Resource Efficient Approach for Improving QoS in Wireless Sensor Networks

    No full text
    International audienceIn Wireless Sensor Networks (WSNs), performance and reliability depend on the fault tolerance scheme used in the system. Fault diagnosis is an important part of fault tolerance. An effective diagnosis tool helps network administrators clearly monitor, manage, and troubleshoot the performance of the network. However, the design of online fault diagnosis is crucial in WSNs since many faults can easily happen and propagate. Besides, fault diagnosis put extra burden on the sensor node and it will also consume extra resources of the sensor nodes. Thus, in order to guarantee the network quality of service, it is essential for WSNs to be able to diagnosis faults efficiently. In this paper, we propose an adaptive and efficient approach for fault diagnosis in WSN called (SMART). SMART is a layer independent fault diagnosis service for WSNs. The presented service focuses on diagnosis two types of failures that are likely to happen in WSN deployments which are the node failure due to energy depletion, and the link failure due to poor connectivity with neighbors. From the design view, SMART provides to the application many tunable parameters that make it suitable for various deployment needs: energy-robustness-detection latency tradeoffs, tolerable packet loss, reports frequency etc. Simulation results prove that SMART is resource efficient while providing satisfactory detection and diagnosis accuracy

    A Novel Trust-Based Authentication Scheme for Low-Resource Devices in Smart Environments

    Get PDF
    In smart environments, pervasive computing contributes in improving daily life activities for dependent people by providing personalized services. Nevertheless, those environments do not guarantee a satisfactory level for protecting the user privacy and ensuring the trust between communicating entities. In this paper, we propose a trust evaluation model based on user past and present behavior. This model is associated to a lightweight authentication key agreement protocol (EC-SAKA). The aim is to enable the communicating entities to establish a level of trust and then succeed in a mutual authentication using a scheme suitable for low-resource devices in smart environments. Finally, we tested and implemented our scheme on Android mobile phones in a smart environment dedicated for handicapped people. Keywords: devices 1

    Comparison of the gut microbiota of people in France and Saudi Arabia

    No full text
    International audienceBACKGROUND/OBJECTIVES: The gut microbiota contributes to energy acquisition from food, and changes in the gut microbiome are associated with obesity. The eating habits of Saudis are much different than those of Europeans, and our objective was to compare the fecal microbiota of obese and normal weight Saudis and French. SUBJECTS/METHODS: Illumina MiSeq deep sequencing was used to test the gut microbiota of 9 normal weight and 9 obese individuals from Saudi Arabia and 16 normal weight and 12 obese individuals from France. RESULTS: Obese French possessed significantly more relative Proteobacteria (P = 0.002) and Bacteroidetes (P = 0.05) and had lower richness and biodiversity at all the operational taxonomic unit (OTU) cutoffs (Po0.05) than normal weight French. Obese Saudis possessed significantly more Firmicutes (P = 0.001) without a difference in richness (P = 0.2) and biodiversity (P = 0.3) compared with normal weight Saudis. We found a common bacterial species core of 23 species existing in >= 50% of obese and normal weight Saudis and 29 species in. 50% of obese and normal weight French. Actinomyces odontolyticus, Escherichia coli and Ruminococcus obeum were present in at least 50% of all individuals tested. French individuals had significantly higher richness and biodiversity compared with Saudis at all the OTU cutoffs (P < 0.05). CONCLUSION: Microbiota differences between obese and normal weight French were not similar to those between obese and normal weight Saudis. The studies of different populations can result in contrasting data regarding the associations of the gut microbiota and obesity
    corecore