2,358 research outputs found

    Infinite Shannon entropy

    Full text link
    Even if a probability distribution is properly normalizable, its associated Shannon (or von Neumann) entropy can easily be infinite. We carefully analyze conditions under which this phenomenon can occur. Roughly speaking, this happens when arbitrarily small amounts of probability are dispersed into an infinite number of states; we shall quantify this observation and make it precise. We develop several particularly simple, elementary, and useful bounds, and also provide some asymptotic estimates, leading to necessary and sufficient conditions for the occurrence of infinite Shannon entropy. We go to some effort to keep technical computations as simple and conceptually clear as possible. In particular, we shall see that large entropies cannot be localized in state space; large entropies can only be supported on an exponentially large number of states. We are for the time being interested in single-channel Shannon entropy in the information theoretic sense, not entropy in a stochastic field theory or QFT defined over some configuration space, on the grounds that this simple problem is a necessary precursor to understanding infinite entropy in a field theoretic context.Comment: 13 pages; V2: 4 references adde

    Inertial frames without the relativity principle

    Full text link
    Ever since the work of von Ignatowsky circa 1910 it has been known (if not always widely appreciated) that the relativity principle, combined with the basic and fundamental physical assumptions of locality, linearity, and isotropy, leads almost uniquely to either the Lorentz transformations of special relativity or to Galileo's transformations of classical Newtonian mechanics. Thus, if one wishes to entertain the possibility of Lorentz symmetry breaking within the context of the class of local physical theories, then it seems likely that one will have to abandon (or at the very least grossly modify) the relativity principle. Working within the framework of local physics, we reassess the notion of spacetime transformations between inertial frames in the absence of the relativity principle, arguing that significant and nontrivial physics can still be extracted as long as the transformations are at least linear. An interesting technical aspect of the analysis is that the transformations now form a groupoid/pseudo-group --- it is this technical point that permits one to evade the von Ignatowsky argument. Even in the absence of a relativity principle we can nevertheless deduce clear and compelling rules for the transformation of space and time, rules for the composition of 3-velocities, and rules for the transformation of energy and momentum. As part of the analysis we identify two particularly elegant and physically compelling models implementing "minimalist" violations of Lorentz invariance --- in the first of these minimalist models all Lorentz violations are confined to carefully delineated particle physics sub-sectors, while the second minimalist Lorentz-violating model depends on one free function of absolute velocity, but otherwise preserves as much as possible of standard Lorentz invariant physics.Comment: V1: 42 pages; V2: now 43 pages; added 8 references, added brief discussion of Carroll kinematics, added brief discussion of Robertson-Mansouri-Sexl framework, added various minor clarifications. V3: now 51 pages; added another 34 references; more discussion of DSR and relative locality; various clarifications and extensions; this version accepted for publication in JHE

    Null Energy Condition violations in bimetric gravity

    Full text link
    We consider the effective stress-energy tensors for the foreground and background sectors in ghost-free bimetric gravity. By considering the symmetries of the theory, we show that the foreground and background null energy conditions (NECs) are strongly anti-correlated. In particular, the NECs can only be simultaneously fulfilled when they saturate, corresponding to foreground and background cosmological constants. In all other situations, either the foreground or the background is subject to a NEC-violating contribution to the total stress-energy.Comment: v1: 16 pages; v2: 2 references adde

    Gordon and Kerr-Schild ansatze in massive and bimetric gravity

    Full text link
    We develop the "generalized Gordon ansatz" for the ghost-free versions of both massive and bimetric gravity, an ansatz which is general enough to include almost all spacetimes commonly considered to be physically interesting, and restricted enough to greatly simplify calculations. The ansatz allows explicit calculation of the matrix square root gamma = sqrt{g^{-1} f} appearing as a central feature of the ghost-free analysis. In particular, this ansatz automatically allows us to write the effective stress-energy tensor as that corresponding to a perfect fluid. A qualitatively similar "generalized Kerr-Schild ansatz" can also be easily considered, now leading to an effective stress-energy tensor that corresponds to a null fluid. Cosmological implications are considered, as are consequences for black hole physics. Finally we have a few words to say concerning the null energy condition in the framework provided by these ansatze.Comment: 22 page

    The information recovery problem

    Full text link
    The issue of unitary evolution during creation and evaporation of a black hole remains controversial. We~argue that some prominent cures are more troubling than the disease, demonstrate that their central element---forming of the event horizon before the evaporation begins---is not necessarily true, and describe a fully coupled matter-gravity system which is manifestly unitary.Comment: 7 pages +1 fig Published versio

    The particle interpretation of N = 1 supersymmetric spin foams

    Full text link
    We show that N = 1 supersymmetric BF theory in 3d leads to a supersymmetric spin foam amplitude via a lattice discretisation. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3d gravity coupled to embedded fermionic Feynman diagrams.Comment: Pages: 16+1
    corecore