2,214 research outputs found

    Spin Dynamical Properties of the Layered Perovskite La1.2Sr1.8Mn2O7

    Full text link
    Inelastic neutron-scattering measurements were performed on a single crystal of the layered colossal magnetoresistance (CMR) material La1.2Sr1.8Mn2O7 (Tc ~ 120K). We found that the spin wave dispersion is almost perfectly two-dimensional with the in-plane spin stiffness constant D ~ 151meVA. The value is similar to that of similarly doped La1-xSrxMnO3 though its Tc is three times higher, indicating a large renormalization due to low dimensionality. There exist two branches due to a coupling between layers within a double-layer. The out-of-plane coupling is about 30% of the in-plane coupling though the Mn-O bond lengths are similar.Comment: 3 pages, 3 figures J. Phys. Chem. Solids in pres

    Zn-induced spin dynamics in overdoped La2−x_{2-x}Srx_xCu1−y_{1-y}Zny_yO4_4

    Full text link
    Spin fluctuations and the local spin susceptibility in isovalently Zn-substituted La2−x_{2-x}Srx_{x}Cu1−y_{1-y}Zny_yO4_4 (x=0.25x=0.25, y≈0.01y\approx0.01) are measured via inelastic neutron scattering techniques. As Zn2+^{2+} is substituted onto the Cu2+^{2+}-sites, an anomalous enhancement of the local spin susceptibility χ′′(ω)\chi^{\prime\prime}(\omega) appears due to the emergence of a commensurate antiferromagnetic excitation centered at wave vector \textbf{Q}=(π,π,0)=(\pi, \pi, 0) that coexists with the known incommensurate SDW excitations at \textbf{Q}HK=(π±δ,π),(π,π±δ)_{HK}=(\pi\pm\delta,\pi), (\pi,\pi\pm\delta). Our results support a picture of Zn-induced antiferromagnetic (AF) fluctuations appearing through a local staggered polarization of Cu2+^{2+}-spins, and the simultaneous suppression of Tc_c as AF fluctuations are slowed in proximity to Zn-impurities suggests the continued importance of high energy AF fluctuations at the far overdoped edge of superconductivity in the cuprates.Comment: 10 pages, 8 figure

    Successful Strategies for Discharging Medicaid Nursing Home Residents with Mental Health Diagnoses to the Community

    Get PDF
    The state and federal push to transition Medicaid residents from nursing homes to the community calls for effective discharge strategies targeted to residents’ diverse needs. This exploratory, mixed-methods study utilized the Minimum Data Set to describe demographics, health characteristics, and transition patterns of Kansas Medicaid residents with mental health diagnoses who were discharged from nursing homes from 2005 to 2008. Discharged residents (n = 720) had multiple comorbidities, and more than half remained in the community following their first nursing home event. In-depth interviews with nursing home staff (n = 11) explored successful discharge strategies. Successful strategies support an ecological approach to meeting individual, family, organizational, and community needs. This includes creating/sustaining a culture of discharge, encompassing informal and formal community supports in the discharge process, proactively addressing physical environment needs, and assisting individuals and their family members in managing physical and mental health conditions. Findings suggest that policies in the areas of preadmission screening, caregiver support, and revised Medicaid reimbursement are needed to better support continuity of care and promote discharge for nursing home residents with complex care needs. Future research could examine individual and family perspectives on the discharge process and track outcomes when transitioning between settings

    The complex multiferroic phase diagram of Mn1−x_{1-x}Cox_xWO4_4

    Full text link
    The complete magnetic and multiferroic phase diagram of Mn1−x_{1-x}Cox_{x}WO4_4 single crystals is investigated by means of magnetic, heat capacity, and polarization experiments. We show that the ferroelectric polarization P→\overrightarrow{P} in the multiferroic state abruptly changes its direction twice upon increasing Co content, x. At xc1_{c1}=0.075, P→\overrightarrow{P} rotates from the b−b-axis into the a−ca-c plane and at xc2_{c2}=0.15 it flips back to the b−b-axis. The origin of the multiple polarization flops is identified as an effect of the Co anisotropy on the orientation and shape of the spin helix leading to thermodynamic instabilities caused by the decrease of the magnitude of the polarization in the corresponding phases. A qualitative description of the ferroelectric polarization is derived by taking into account the intrachain (c−c-axis) as well as the interchain (a−a-axis) exchange pathways connecting the magnetic ions. In a narrow Co concentration range (0.1≤\leqx≤\leq0.15), an intermediate phase, sandwiched between the collinear high-temperature and the helical low-temperature phases, is discovered. The new phase exhibits a collinear and commensurate spin modulation similar to the low-temperature magnetic structure of MnWO4_4.Comment: 18 pages, 6 figure

    Magnetic Excitations of the Diagonal Incommensurate Phase in Lightly-Doped La2-xSrxCuO4

    Full text link
    We present inelastic neutron scattering experiments on a single-domain crystal of lightly-doped La1.96Sr0.04CuO4. We find that the magnetic excitation spectrum in this insulating phase with a diagonal incommensurate spin modulation is remarkably similar to that in the superconducting regime, where the spin modulation is bond parallel. In particular, we find that the dispersion slope at low energy is essentially independent of doping and temperature over a significant range. The energy at which the excitations cross the commensurate antiferromagnetic wave vector increases roughly linearly with doping through the underdoped regime.Comment: 4 pages, 5 figure

    Upgrade to the Birmingham Irradiation Facility

    Get PDF
    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system

    Magnon Damping by magnon-phonon coupling in Manganese Perovskites

    Full text link
    Inelastic neutron scattering was used to systematically investigate the spin-wave excitations (magnons) in ferromagnetic manganese perovskites. In spite of the large differences in the Curie temperatures (TCT_Cs) of different manganites, their low-temperature spin waves were found to have very similar dispersions with the zone boundary magnon softening. From the wavevector dependence of the magnon lifetime effects and its correlation with the dispersions of the optical phonon modes, we argue that a strong magneto-elastic coupling is responsible for the observed low temperature anomalous spin dynamical behavior of the manganites.Comment: 11 pages, 4 figure
    • …
    corecore