14 research outputs found

    Intermittent fasting and caloric restriction interact with genetics to shape physiological health in mice.

    No full text
    Dietary interventions can dramatically affect physiological health and organismal lifespan. The degree to which organismal health is improved depends upon genotype and the severity of dietary intervention, but neither the effects of these factors, nor their interaction, have been quantified in an outbred population. Moreover, it is not well understood what physiological changes occur shortly after dietary change and how these may affect the health of an adult population. In this article, we investigated the effect of 6-month exposure of either caloric restriction (CR) or intermittent fasting (IF) on a broad range of physiological traits in 960 1-year old Diversity Outbred mice. We found CR and IF affected distinct aspects of physiology and neither the magnitude nor the direction (beneficial or detrimental) of effects were concordant with the severity of the intervention. In addition to the effects of diet, genetic variation significantly affected 31 of 36 traits (heritabilities ranged from 0.04 to 0.65). We observed significant covariation between many traits that was due to both diet and genetics and quantified these effects with phenotypic and genetic correlations. We genetically mapped 16 diet-independent and 2 diet-dependent significant quantitative trait loci, both of which were associated with cardiac physiology. Collectively, these results demonstrate the degree to which diet and genetics interact to shape the physiological health of adult mice following 6 months of dietary intervention

    Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity.

    No full text
    The immune system comprises a complex network of specialized cells that protects against infection, eliminates cancerous cells, and regulates tissue repair, thus serving a critical role in homeostasis, health span, and life span. The subterranean-dwelling naked mole-rat (NM-R; Heterocephalus glaber) exhibits prolonged life span relative to its body size, is unusually cancer resistant, and manifests few physiological or molecular changes with advancing age. We therefore hypothesized that the immune system of NM-Rs evolved unique features that confer enhanced cancer immunosurveillance and prevent the age-associated decline in homeostasis. Using single-cell RNA-sequencing (scRNA-seq) we mapped the immune system of the NM-R and compared it to that of the short-lived, cancer-prone mouse. In contrast to the mouse, we find that the NM-R immune system is characterized by a high myeloid-to-lymphoid cell ratio that includes a novel, lipopolysaccharide (LPS)-responsive, granulocyte cell subset. Surprisingly, we also find that NM-Rs lack canonical natural killer (NK) cells. Our comparative genomics analyses support this finding, showing that the NM-R genome lacks an expanded gene family that controls NK cell function in several other species. Furthermore, we reconstructed the evolutionary history that likely led to this genomic state. The NM-R thus challenges our current understanding of mammalian immunity, favoring an atypical, myeloid-biased mode of innate immunosurveillance, which may contribute to its remarkable health span
    corecore