22 research outputs found
Human Ischaemic Cascade Studies Using SH-SY5Y Cells: a Systematic Review and Meta-Analysis
Low translational yield for stroke may reflect the focus of discovery science on rodents rather than humans. Just how little is known about human neuronal ischaemic responses is confirmed by systematic review and meta-analysis revealing that data for the most commonly used SH-SY5Y human cells comprises only 84 papers. Oxygen-glucose deprivation, H2O2, hypoxia, glucose-deprivation and glutamate excitotoxicity yielded − 58, − 61, − 29, − 45 and − 49% injury, respectively, with a dose-response relationship found only for H2O2 injury (R2 = 29.29%, p I2 = 99.36%, df = 132, p R2 = 44.77%, p R2 = 28.64%, p R2 = 4.13%, p p 2O2 injury reported only improvement. In studies using glucose deprivation, intervention generally worsened outcome. There was insufficient data to rank individual interventions, but of the studies reporting greatest improvement (> 90% effect size), 7/13 were of herbal medicine constituents (24.85% of the intervention dataset). We conclude that surprisingly little is known of the human neuronal response to ischaemic injury, and that the large impact of methodology on outcome indicates that further model validation is required. Lack of evidence for randomisation, blinding or power analysis suggests that the intervention data is at substantial risk of bias
Comparison of the Whole-Body Bone Scintigraphy with Levels of the Markers of Bone Metabolism in Serum of Patients with Malignant Melanoma
Objective. The aim of this study was to evaluate serum levels of the biochemical markers of bone metabolism: osteocalcin (OC), beta-carboxyterminal cross-linked telopeptide of type I collagen (β-CTx) with the presence of bone metastases detected by whole-body bone scintigraphy in patients with malignant melanoma
Factors attributable to the level of exhaled nitric oxide in asthmatic children
Background: Asthma is a heterogeneous disease with variable symptoms especially in children. Exhaled nitric oxide (FeNO) has proved to be a marker of inflammation in the airways and has become a substantial part of clinical management of asthmatic children due to its potential to predict possible exacerbation and adjust the dose of inhalant corticosteroids. Objectives. We analyzed potential factors that contribute to the variability of nitric oxide in various clinical and laboratory conditions. Materials and methods. Study population consisted of 222 asthmatic children and 27 healthy control subjects. All children underwent a panel of tests: fractioned exhaled nitric oxide, exhaled carbon monoxide, asthma control test scoring, blood sampling, skin prick tests, and basic spirometry. Results: FeNO and other investigated parameters widely changed according to clinical or laboratory characteristics of the tested children. Asthmatics showed increased levels of FeNO, exhaled carbon monoxide, total serum IgE, and higher eosinophilia. Boys had higher FeNO levels than girls. We found a significant positive correlation between FeNO levels and the percentage of blood eosinophils, %predicted of forced vital capacity, total serum IgE levels, and increasing age. Conclusions: Various phenotypes of children's asthma are characterized by specific pattern of the results of clinical and laboratory tests. FeNO correlates with total serum IgE, blood eosinophilia, age, and some spirometric parameters with different strength. Therefore, the coexistence of atopy, concomitant allergic rhinitis/ rhinoconjunctivitis, and some other parameters should be considered in critical evaluation of FeNO in the management of asthmatic children. © 2009 I. Holzapfel Publishers