9,325 research outputs found

    Higgs boson of mass 125 GeV in GMSB models with messenger-matter mixing

    Full text link
    We investigate the effects of messenger-matter mixing on the lightest CP-even Higgs boson mass m_h in gauge-mediated supersymmetry breaking models. It is shown that with such mixings m_h can be raised to about 125 GeV, even when the superparticles have sub-TeV masses, and when the gravitino has a cosmologically preferred sub-keV mass. In minimal gauge mediation without messenger-matter mixing, realizing m_h = 125 GeV would require multi-TeV SUSY spectrum. The increase in mhm_h due to messenger-matter mixing is maximal in the case of messengers belonging to 10+\bar{10} of SU(5) unification, while it is still significant when they belong to 5+5ˉ5+\bar{5} of SU(5). Our results are compatible with gauge coupling unification, perturbativity, and the unification of messenger Yukawa couplings. We embed these models into a grand unification framework with a U(1) flavor symmetry that addresses the fermion mass hierarchy and generates naturally large neutrino mixing angles. While SUSY mediated flavor changing processes are sufficiently suppressed in such an embedding, small new contributions to K^0-\bar{K^0} mixing can resolve the apparent discrepancy in the CP asymmetry parameters \sin2\beta and \epsilon_K.Comment: 31 pages, LaTe

    Collective treatment of High Energy Thresholds in SUSY - GUTs

    Full text link
    Supersymmetric GUTs are the most natural extension of the Standard model unifying electroweak and strong forces. Despite their indubitable virtues, among these the gauge coupling unification and the quantization of the electric charge, one of their shortcomings is the large number of parameters used to describe the high energy thresholds (HET), which are hard to handle. We present a new method according to which the effects of the HET, in any GUT model, can be described by fewer parameters that are randomly produced from the original set of the parameters of the model. In this way, regions favoured by the experimental data are easier to locate, avoiding a detailed and time consuming exploration of the parameter space, which is multidimensional even in the most economic unifying schemes. To check the efficiency of this method, we directly apply it to a SUSY SO(10) GUT model in which the doublet-triplet splitting is realized through the Dimopoulos-Wilczek mechanism. We show that the demand of gauge coupling unification, in conjunction with precision data, locates regions of the parameter space in which values of the strong coupling \astrong are within the experimental limits, along with a suppressed nucleon decay, mediated by a higgsino driven dimension five operators, yielding lifetimes that are comfortably above the current experimental bounds. These regions open up for values of the SUSY breaking parameters m_0, M_1/2 < 1 TeV being therefore accessible to LHC.Comment: 21 pages, 8 figures, UA-NPPS/BSM-10/02 (added

    Model for Small neutrino masses at the TeV Scale

    Full text link
    We propose a model for neutrino mass generation in wich no physics beyond a TeV is required. We extend the standard model by adding two charged singlet fields with lepton number two. Dirac neutrino masses mνDMeVm_{\nu_D} \leq MeV are generated at the one loop level. Small left handed majorana neutrino masses can be generated via the seesaw mechanism with right handed neutrino masses MRM_R are of order TeV scale.Comment: 13 pages, 2 figure

    Flavor Gauge Models Below the Fermi Scale

    Full text link
    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, XX, corresponding to the BLB-L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B+B^+, D+D^+ and Upsilon decays, DDˉ0D-\bar{D}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling gXg_X in the range (102104)(10^{-2} - 10^{-4}) the model is shown to be consistent with the data. Possible ways of testing the model in bb physics, top and ZZ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.Comment: 44 pages, 7 figures, 3 tables; B physics constraints and references added, conclusions unchange

    Eliminating the d=5 proton decay operators from SUSY GUTs

    Get PDF
    A general analysis is made of the question whether the d=5 proton decay operators coming from exchange of colored Higgsinos can be completely eliminated in a natural way in supersymmetric grand unified models. It is shown that they can indeed be in SO(10) while at the same time naturally solving the doublet-triplet splitting problem, having only two light Higgs doublets, and using no more than a single adjoint Higgs field. Accomplishing all of this requires that the vacuum expectation value of the adjoint Higgs field be proportional to the generator I_{3R} rather than to B-L, as is usually assumed. It is shown that such models can give realistic quark and lepton masses. We also point out a new mechanism for solving the \mu problem in the context of SO(10) SUSY GUTs.Comment: 24 pages in LaTeX, with 3 figure

    Natural Gauge Hierarchy in SO(10)

    Full text link
    It is shown that a natural gauge hierarchy and doublet-triplet splitting can be achieved in SO(10) using the Dimopoulos-Wilczek mechanism. Artificial cancellations (fine-tuning) and arbitrary forms of the superpotential are avoided, the superpotential being the most general compatible with a symmetry. It is shown by example that the Dimopoulos-Wilczek mechanism can be protected against the effects of higher-dimension operators possibly induced by Planck-scale physics. Natural implementation of the mechanism leads to an automatic Peccei-Quinn symmetry. The same local symmetries that would protect the gauge hierarchy against Planck-scale effects tend to protect the axion also. It is shown how realistic quark and lepton masses might arise in this framework. It is also argued that ``weak suppression'' of proton decay can be implemented more economically than can ``strong suppression'', offering some grounds to hope (in the context of SO(10)) that proton decay could be seen at Superkamiokande.Comment: 26 pages in plain LaTeX, 5 figures available on request, BA-94-0

    Evaluation of the effectiveness of seminar as an educational tool among the medical post graduate students

    Get PDF
    Background: The departments of medical colleges have a greater responsibility in making the study methods of their subject innovative, interesting and participatory for the post graduate students. One such method adopted is organizing seminars for the post graduate students. The post graduate education depends on self-learning. Knowledge acquisition through seminars forms an essential part of their training programme.Methods: This study assesses the role of seminar as teaching-learning tool by recording the perception of post graduates on seminars through a questionnaire based survey.Results: The scores for most of the items of a twenty point questionnaire were above three indicating the learning from seminar is satisfactory. Seminar methods of teaching-learning, in contrast to the traditional didactic class room lecture method, is more effective way of  learning, which is relevant to self-development and is also interactive. This method provokes discussions and debates which help post graduate students to voice their opinion and clear their doubts.  Conclusions: Many of the post graduate students feel that this technique of seminar programme is useful amidst some suggestions to improve quality. Thus the post graduate seminar method is a teaching-learning method that covers the three major domains of teaching i.e., cognitive, affective and psychomotor skills and is thus effective and well -accepted among the post graduate students.
    corecore