41 research outputs found

    Analysis of conformational variation in macromolecular structural models

    Get PDF
    Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models

    X-ray structure of engineered human Aortic Preferentially Expressed Protein-1 (APEG-1)

    Get PDF
    BACKGROUND: Human Aortic Preferentially Expressed Protein-1 (APEG-1) is a novel specific smooth muscle differentiation marker thought to play a role in the growth and differentiation of arterial smooth muscle cells (SMCs). RESULTS: Good quality crystals that were suitable for X-ray crystallographic studies were obtained following the truncation of the 14 N-terminal amino acids of APEG-1, a region predicted to be disordered. The truncated protein (termed ΔAPEG-1) consists of a single immunoglobulin (Ig) like domain which includes an Arg-Gly-Asp (RGD) adhesion recognition motif. The RGD motif is crucial for the interaction of extracellular proteins and plays a role in cell adhesion. The X-ray structure of ΔAPEG-1 was determined and was refined to sub-atomic resolution (0.96 Å). This is the best resolution for an immunoglobulin domain structure so far. The structure adopts a Greek-key β-sandwich fold and belongs to the I (intermediate) set of the immunoglobulin superfamily. The residues lying between the β-sheets form a hydrophobic core. The RGD motif folds into a 3(10 )helix that is involved in the formation of a homodimer in the crystal which is mainly stabilized by salt bridges. Analytical ultracentrifugation studies revealed a moderate dissociation constant of 20 μM at physiological ionic strength, suggesting that APEG-1 dimerisation is only transient in the cell. The binding constant is strongly dependent on ionic strength. CONCLUSION: Our data suggests that the RGD motif might play a role not only in the adhesion of extracellular proteins but also in intracellular protein-protein interactions. However, it remains to be established whether the rather weak dimerisation of APEG-1 involving this motif is physiogically relevant

    <i>In silico</i> methods to extract dynamic information.

    No full text
    <p>CONCOORD and temperature factor analysis of Prevent host death protein (Phd: 3HRY) that shows a disordered-to-ordered conformational transition upon forming a complex with the Death on curing protein (Phd-Doc complex: 3K33). The grey bar represents the region in the Phd protein that undergoes structural change upon forming the Phd-Doc complex.</p

    Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAk): An important allosteric enzyme for amino acids production

    Get PDF
    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-l-aspartate from l-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw = 48,030 Da; 437aa; SwissProt: Q97MC0) has been determined to 3 Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase domain) and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry

    Summary of the dataset of molecular models examined for structural variations and conformational selection by experimental methods.

    No full text
    <p>(<b>A</b>) The initial dataset of proteins was compiled for a representative sampling of folds and families. After selecting protein-structural pairs based on experimental and sequence criteria, the dataset for analysis included 31 different protein pairs across five different structural classes. (<b>B</b>) Bar diagrams represent the protein-protein, protein-nucleic acid complexes and peptides used in this study. Dark blue bars in all the classes represent the initial selection from a set of 183 protein-protein complexes, 82 protein-nucleic acid complexes and 110 peptide structures. The final composition of this dataset (shown here in gray and light blue bars) is based on the sequence and structural criteria described in the methods section of this manuscript.</p
    corecore