4 research outputs found

    An entropy based proof of the Moore bound for irregular graphs

    Get PDF
    We provide proofs of the following theorems by considering the entropy of random walks: Theorem 1.(Alon, Hoory and Linial) Let G be an undirected simple graph with n vertices, girth g, minimum degree at least 2 and average degree d: Odd girth: If g=2r+1,then n \geq 1 + d*(\Sum_{i=0}^{r-1}(d-1)^i) Even girth: If g=2r,then n \geq 2*(\Sum_{i=0}^{r-1} (d-1)^i) Theorem 2.(Hoory) Let G = (V_L,V_R,E) be a bipartite graph of girth g = 2r, with n_L = |V_L| and n_R = |V_R|, minimum degree at least 2 and the left and right average degrees d_L and d_R. Then, n_L \geq \Sum_{i=0}^{r-1}(d_R-1)^{i/2}(d_L-1)^{i/2} n_R \geq \Sum_{i=0}^{r-1}(d_L-1)^{i/2}(d_R-1)^{i/2}Comment: 6 page

    <i>meso</i>-Tetrakis(<i>p</i>-sulfonatophenyl)N-Confused Porphyrin Tetrasodium Salt: A Potential Sensitizer for Photodynamic Therapy

    No full text
    A water-soluble derivative of N-confused porphyrin (NCP) was synthesized, and the photodynamic therapeutic (PDT) application was investigated by photophysical and <i>in vitro</i> studies. High singlet oxygen quantum yield in water at longer wavelength and promising IC<sub>50</sub> values in a panel of cancer cell lines ensure the potential candidacy of the sensitizer as a PDT drug. Reactive oxygen species (ROS) generation on PDT in MDA-MB 231 cells and the apoptotic pathway of cell death was illustrated using different techniques
    corecore