8 research outputs found

    Fluoride-responsive debond on demand adhesives: manipulating polymer crystallinity and hydrogen bonding to optimise adhesion strength at low bonding temperatures

    No full text
    This paper reports the solvent-free synthesis of a series of six fluoride responsive debond-on-demand polyurethane (PU) adhesives that contain a silyl functionalised degradable unit (DU). To optimise the adhesion strength and debonding nature of the adhesives, the chemical composition of the PUs was varied according to the structure of the polyol or the diisocyanate component in the polymer mainchain. 1H NMR spectroscopy was used to study the depolymerisation behaviour in solution state. It showed that tetra-butylammonium fluoride (TBAF) triggered the breakdown of the DU unit without fragmenting the polyol mainchain indiscriminately. On exposure to fluoride ions, the PUs underwent depolymerisation with reductions in Mn ranging from 64 to 90% as measured by GPC analysis. The morphology and thermal properties of the PUs were characterised by differential scanning calorimetry (DSC), rheology and variable temperature (VT) SAXS/WAXS analysis. Each technique demonstrated the reversibility of the supramolecular polymer network under thermal stimuli. PUs containing poly(butadiene) soft segments were amorphous with glass transition and viscoelastic transition temperatures dependent on the nature of the soft segment and diisocyanate starting materials. The PU containing a polyester soft segment exhibited a defined melting point at 49 °C. Mechanical stress-strain analysis of the series of PUs showed each exhibited greater than 70% reduction in toughness after treatment with TBAF for 30 min as a consequence of the chemo-responsive degradation of the polymer mainchain. The material featuring an ester-based polyol demonstrated excellent adhesion at bonding temperatures as low as 60 °C. Moreover, this material could be thermally rebonded if broken by force without loss in adhesion strength over three debond-rebond cycles. Lap shear adhesion tests showed a reduction in adhesive strength of approximately 40% (from 11.4 MPa to 7.3 MPa) on exposure to fluoride ions

    Observation of rotation about the longest principal axis in Zr 89

    No full text
    High-spin states in Zr89 were populated in the Se80(C13,4n) reaction, and γ-ray coincidences were measured using the Indian National Gamma Array. The level scheme of Zr89 has been extended up to spin I=49/2 with the observation of a new dipole band. Directional correlation and polarization asymmetries of the γ rays have been measured to determine spin and parity of the levels. Line shapes of several transitions have been analyzed to determine lifetimes of the levels. Possible configurations of the band have been discussed using the cranked Nilsson-Strutinsky model. The calculations suggest a triaxial shape of the nucleus at high spins, and the band may represent rotation of the nucleus about the longest axis

    Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model

    Get PDF
    BACKGROUND: Biofilm formation by Staphylococcus aureus is an important virulence attribute because of its potential to induce persistent antibiotic resistance, retard phagocytosis and either attenuate or promote inflammation, depending upon the disease syndrome, in vivo. This study was undertaken to evaluate the potential significance of strength of biofilm formation by clinical bovine mastitis-associated S. aureus in mammary tissue damage by using a mouse mastitis model. METHODS: Two S. aureus strains of the same capsular phenotype with different biofilm forming strengths were used to non-invasively infect mammary glands of lactating mice. Biofilm forming potential of these strains were determined by tissue culture plate method, ica typing and virulence gene profile per detection by PCR. Delivery of the infectious dose of S. aureus was directly through the teat lactiferous duct without invasive scraping of the teat surface. Both bacteriological and histological methods were used for analysis of mammary gland pathology of mice post-infection. RESULTS: Histopathological analysis of the infected mammary glands revealed that mice inoculated with the strong biofilm forming S. aureus strain produced marked acute mastitic lesions, showing profuse infiltration predominantly with neutrophils, with evidence of necrosis in the affected mammary glands. In contrast, the damage was significantly less severe in mammary glands of mice infected with the weak biofilm-forming S. aureus strain. Although both IL-1ß and TNF-a inflammatory biomarkers were produced in infected mice, level of TNF-a produced was significantly higher (p<0.05) in mice inoculated with strong biofilm forming S. aureus than the weak biofilm forming strain. CONCLUSION: This finding suggests an important role of TNF-a in mammary gland pathology post-infection with strong biofilm-forming S. aureus in the acute mouse mastitis model, and offers an opportunity for the development of novel strategies for reduction of mammary tissue damage, with or without use of antimicrobials and/or anti-inflammatory compounds for the treatment of bovine mastitis

    The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia

    No full text
    The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3-4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus
    corecore