8 research outputs found

    Optimal Data Reduction of Training Data in Machine Learning-Based Modelling: A Multidimensional Bin Packing Approach

    No full text
    In these days, when complex, IT-controlled systems have found their way into many areas, models and the data on which they are based are playing an increasingly important role. Due to the constantly growing possibilities of collecting data through sensor technology, extensive data sets are created that need to be mastered. In concrete terms, this means extracting the information required for a specific problem from the data in a high quality. For example, in the field of condition monitoring, this includes relevant system states. Especially in the application field of machine learning, the quality of the data is of significant importance. Here, different methods already exist to reduce the size of data sets without reducing the information value. In this paper, the multidimensional binned reduction (MdBR) method is presented as an approach that has a much lower complexity in comparison on the one hand and deals with regression, instead of classification as most other approaches do, on the other. The approach merges discretization approaches with non-parametric numerosity reduction via histograms. MdBR has linear complexity and can be facilitated to reduce large multivariate data sets to smaller subsets, which could be used for model training. The evaluation, based on a dataset from the photovoltaic sector with approximately 92 million samples, aims to train a multilayer perceptron (MLP) model to estimate the output power of the system. The results show that using the approach, the number of samples for training could be reduced by more than 99%, while also increasing the model’s performance. It works best with large data sets of low-dimensional data. Although periodic data often include the most redundant samples and thus provide the best reduction capabilities, the presented approach can only handle time-invariant data and not sequences of samples, as often done in time series

    Present status and future trends in enabling demand response programs

    No full text
    This paper addresses implementation of Demand Response (DR) programs in competitive electricity markets. An overview of present status of the application of DR programs in major electricity markets is provided. In this paper, An objective-wised classification of DR measures is proposed which is rooted in practical DR experiences. Market opportunities and associated barriers are investigated. Further, enabling technologies for implementing DR programs are discussed. Finally, the role of smart grid in enabling DR is highlighted

    Resilience-oriented operation of power systems: Hierarchical partitioning-based approach

    No full text
    As an achievement of innovations resulting from partitioning mechanisms, these mechanisms can contribute to the more flexible operation of power systems in local communities. The ever-increasing frequency and severity of unexpected real-time failures have created challenges for partitioned-based power system operators, affecting each partition's resiliency. With this in mind, this paper presents an adaptive local operation strategy (ALOS) for resilient scheduling of the renewable-dominated partitioned-based power systems under normal and islanding modes in a decentralized manner. The main objective of the developed ALOS lies in reaching an affordable preparedness level in each partition to deal with unscheduled islanding mode, which can occur subsequent to real-time failures at common lines between adjacent partitions on transmission level. To this end, a set of resilience-target constraints is presented to prepare sufficient spinning reserve capacity in each partition to ensure continuity of supply during islanding mode. The proposed strategy is formulated as a two-stage stochastic mixed-integer linear program (MILP), and the nested formation algorithm is employed to execute it in a hierarchical fashion based on the privacy-preserving protocols. Besides, the tri-state compressed air energy storage (CAES) system is also included in the proposed strategy to mitigate the negative consequences caused by real-time failures and uncertain sources. Numerical results conducted on the IEEE 30-bus test system reveal that the proposed ALOS can enhance the resilience of each partition in responding to unscheduled islanding mode by efficiently utilizing all available capacities on the generation side. Furthermore, the DIgSILENT PowerFactory is used to identify the worst possible series of events and to evaluate the effectiveness of the proposed resilience-promoting proactive strategy in dealing with these events. 2022 Elsevier LtdScopus2-s2.0-8512515056

    Resilience-oriented operation of power systems: Hierarchical partitioning-based approach

    No full text
    As an achievement of innovations resulting from partitioning mechanisms, these mechanisms can contribute to the more flexible operation of power systems in local communities. The ever-increasing frequency and severity of unexpected real-time failures have created challenges for partitioned-based power system operators, affecting each partition's resiliency. With this in mind, this paper presents an adaptive local operation strategy (ALOS) for resilient scheduling of the renewable-dominated partitioned-based power systems under normal and islanding modes in a decentralized manner. The main objective of the developed ALOS lies in reaching an affordable preparedness level in each partition to deal with unscheduled islanding mode, which can occur subsequent to real-time failures at common lines between adjacent partitions on transmission level. To this end, a set of resilience-target constraints is presented to prepare sufficient spinning reserve capacity in each partition to ensure continuity of supply during islanding mode. The proposed strategy is formulated as a two-stage stochastic mixed-integer linear program (MILP), and the nested formation algorithm is employed to execute it in a hierarchical fashion based on the privacy-preserving protocols. Besides, the tri-state compressed air energy storage (CAES) system is also included in the proposed strategy to mitigate the negative consequences caused by real-time failures and uncertain sources. Numerical results conducted on the IEEE 30-bus test system reveal that the proposed ALOS can enhance the resilience of each partition in responding to unscheduled islanding mode by efficiently utilizing all available capacities on the generation side. Furthermore, the DIgSILENT PowerFactory is used to identify the worst possible series of events and to evaluate the effectiveness of the proposed resilience-promoting proactive strategy in dealing with these events.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Electrical Power Grid

    Research Projekt SiNED Insights - Ancillary services for Reliable Power Grids in times of the Progressive German Energiewende and Digital Transformation

    No full text
    Ancillary services in future power systems have to be provided by decentralized distributed energy resources, resulting in various, interdisciplinary issues. Focusing on the three competence areas (Electrical Power Engineering, Digital Transformation/Information and Communication Technology, and Energy Law and Economics), insights for the central research goals of the project are presented (after three of five years of project duration). While results indicate, that the future ancillary services demand of a climate-neutral power system can be supplied with further developments, open questions and issues still remain. The interdisciplinary studies of the SiNED consortium show that it will be possible to provide ancillary services also from the lower voltage levels, both technically and economically. These results and the necessary regulatory frameworks are discussed in this paper

    SiNED-Ancillary Services for Reliable Power Grids in Times of Progressive German Energiewende and Digital Transformation

    Get PDF
    Within SiNED research project, several members of the Energy Research Centre of Lower Saxony (Energieforschungszentrum Niedersachsen, EFZN) are working on various issues relating to the future provision of ancillary services and to future congestion management. The questions include energy technology, economic and energy law aspects as well as information and communications technology (ICT) and data. The investigations are based on Lower Saxony and the framework conditions there. The temporal focus of the investigations is the year 2030
    corecore