39 research outputs found

    Azoloazines as Perspective Antiglycating Agents for Therapy of Diabetes Complications

    Full text link
    This work was supported by Russian Federation Ministry of education and science (grant № 4.6351.2017/8.9) and Russian Foundation for Basic Research (grant № 18-03-00787)

    New antiglycating agents for diabetes therapy

    Full text link
    It was shown that azoloazines (1) demonstrated higher antiglycation activity than reference compound, aminoguanidine, and have some potential as dipeptidylpeptidase-4 inhibitors. By given results this class of heterocycles can be considered as candidate for extended studies to develop drugs against complications of T2DM [1-4].The work was supported by the Ministry of Education and Science of Russia (grant №0836-2020-0058)

    Human genetics in troubled times and places

    Get PDF
    Abstract The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism were associated with widespread migration, especially of Jewish workers expelled from Germany, and of their children, a number of whom would become major contributors to the post-war generation of human and medical geneticists in Britain and America. In Germany itself, eminent geneticists were also involved in the abuses carried out in the name of ‘eugenics’ and ‘race biology’. However, geneticists in America, Britain and the rest of Europe were largely responsible for the ideological foundations of these abuses. In the Soviet Union, geneticists and genetics itself became the object of persecution from the 1930s till as late as the mid 1960s, with an almost complete destruction of the field during this time; this extended also to Eastern Europe and China as part of the influence of Russian communism. Most recently, at the end of the twentieth century, China saw a renewal of government sponsored eugenics programmes, now mostly discarded. During the post-world war 2 decades, human genetics research benefited greatly from recognition of the genetic dangers posed by exposure to radiation, following the atomic bomb explosions in Japan, atmospheric testing and successive accidental nuclear disasters in Russia. Documenting and remembering these traumatic events, now largely forgotten among younger workers, is essential if we are to fully understand the history of human genetics and avoid the repetition of similar disasters in the future. The power of modern human genetic and genomic techniques now gives a greater potential for abuse as well as for beneficial use than has ever been seen in the past

    CK2 Inhibition and Antitumor Activity of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines

    Full text link
    Today, cancer is one of the most widespread and dangerous human diseases with a high mortality rate. Nevertheless, the search and application of new low-toxic and effective drugs, combined with the timely diagnosis of diseases, makes it possible to cure most types of tumors at an early stage. In this work, the range of new polysubstituted 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines was extended. The structure of all the obtained compounds was confirmed by the data of 1H, 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. These compounds were evaluated against human recombinant CK2 using the ADP-GloTM assay. In addition, the IC50 parameters were calculated based on the results of the MTT test against glioblastoma (A-172), embryonic rhabdomyosarcoma (Rd), osteosarcoma (Hos), and human embryonic kidney (Hek-293) cells. Compounds 5f, 5h, and 5k showed a CK2 inhibitory activity close to the reference molecule (staurosporine). The most potential compound in the MTT test was 5m with an IC50 from 13 to 27 µM. Thus, our results demonstrate that 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines are promising for further investigation of their antitumor properties. © 2022 by the authors.Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020–0058, H687.42B.223/20This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, State Contract № FEUZ-2020–0058 (H687.42B.223/20)

    >

    No full text
    corecore