76 research outputs found
Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4 studied by inelastic neutron scattering
We report measurements of the magnetic excitation spectrum of the layered
antiferromagnet La2CoO4 by time-of-flight neutron inelastic scattering. In the
energy range probed in our experiments (0-250 meV) the magnetic spectrum
consists of spin-wave modes with strong in-plane dispersion extending up to 60
meV, and a nearly dispersionless peak at 190 meV. The spin-wave modes exhibit a
small (~1 meV) dispersion along the magnetic zone boundary. We show that the
magnetic spectrum can be described very well by a model of a Heisenberg
antiferromagnet that includes the full spin and orbital degrees of freedom of
Co2+ in an axially-distorted crystal field. The collective magnetic dynamics
are found to be controlled by dominant nearest-neighbour exchange interactions,
strong XY-like single-ion anisotropy and a substantial unquenched orbital
angular momentum.Comment: 8 pages, 7 figure
Magnetic structure of Ba(TiO)Cu(PO) probed using spherical neutron polarimetry
The antiferromagnetic compound Ba(TiO)Cu(PO) contains square
cupola of corner-sharing CuO plaquettes, which were proposed to form
effective quadrupolar order. To identify the magnetic structure, we have
performed spherical neutron polarimetry measurements. Based on symmetry
analysis and careful measurements we conclude that the orientation of the
Cu spins form a non-collinear in-out structure with spins approximately
perpendicular to the CuO motif. Strong Dzyaloshinskii-Moriya interaction
naturally lends itself to explain this phenomenon. The identification of the
ground state magnetic structure should serve well for future theoretical and
experimental studies into this and closely related compounds.Comment: 9 pages, 4 figure
-cation control of magnetoelectric quadrupole order in (TiO)Cu(PO) ( = Ba, Sr, and Pb)
Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric
activity is discovered in the novel compound (TiO)Cu(PO) with
= Pb, which is in contrast with antiferroic quadrupole order observed in
the isostructural compounds with = Ba and Sr. Unlike the famous lone-pair
stereochemical activity which often triggers ferroelectricity as in PbTiO,
the Pb cation in Pb(TiO)Cu(PO) is stereochemically inactive
but dramatically alters specific magnetic interactions and consequently
switches the quadrupole order from antiferroic to ferroic. Our first-principles
calculations uncover a positive correlation between the degree of -O bond
covalency and a stability of the ferroic quadrupole order.Comment: 7 pages, 4 figure
Non-equilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar coupled spin-glass LiHoErF
We present a study of the model spin-glass LiHoErF using
simultaneous AC susceptibility, magnetization and magnetocaloric effect
measurements along with small angle neutron scattering (SANS) at sub-Kelvin
temperatures. All measured bulk quantities reveal hysteretic behavior when the
field is applied along the crystallographic c axis. Furthermore avalanche-like
relaxation is observed in a static field after ramping from the
zero-field-cooled state up to Oe. SANS measurements are employed to
track the microscopic spin reconfiguration throughout both the hysteresis loop
and the related relaxation. Comparing the SANS data to inhomogeneous mean-field
calculations performed on a box of one million unit cells provides a real-space
picture of the spin configuration. We discover that the avalanche is being
driven by released Zeeman energy, which heats the sample and creates positive
feedback, continuing the avalanche. The combination of SANS and mean-field
simulations reveal that the conventional distribution of cluster sizes is
replaced by one with a depletion of intermediate cluster sizes for much of the
hysteresis loop.Comment: 6 pages, 4 figure
Spin anisotropy of the resonance in superconducting FeSe0.5Te0.5
We have used polarized-neutron inelastic scattering to resolve the spin
fluctuations in superconducting FeSe0.5Te0.5 into components parallel and
perpendicular to the layers. A spin resonance at an energy of 6.5 meV is
observed to develop below T_c in both fluctuation components. The resonance
peak is anisotropic, with the in-plane component slightly larger than the
out-of-plane component. Away from the resonance peak the magnetic fluctuations
are isotropic in the energy range studied. The results are consistent with a
dominant singlet pairing state with s^{\pm} symmetry, with a possible minority
component of different symmetry.Comment: 5 pages, 4 figure
Tuning the superconducting and magnetic properties in Fe_ySe_0.25Te_0.75 by varying the Fe-content
The superconducting and magnetic properties of FeSeTe
single crystals () were studied by means of x-ray
diffraction, SQUID magnetometry, muon spin rotation, and elastic neutron
diffraction. The samples with exhibit coexistence of bulk
superconductivity and incommensurate magnetism. The magnetic order remains
incommensurate for , but with increasing Fe content superconductivity
is suppressed and the magnetic correlation length increases. The results show
that the superconducting and the magnetic properties of the
FeSeTe can be tuned not only by varying the Se/Te ratio but
also by changing the Fe content
Spin excitations in the skymion host Cu2OSeO3
We have used inelastic neutron scattering to measure the magnetic excitation
spectrum along the high-symmetry directions of the first Brillouin zone of the
magnetic skyrmion hosting compound CuOSeO. The majority of our
scattering data are consistent with the expectations of a recently proposed
model for the magnetic excitations in CuOSeO, and we report best-fit
parameters for the dominant exchange interactions. Important differences exist,
however, between our experimental findings and the model expectations. These
include the identification of two energy scales that likely arise due to
neglected anisotropic interactions. This feature of our work suggests that
anisotropy should be considered in future theoretical work aimed at the full
microscopic understanding of the emergence of the skyrmion state in this
material.Comment: 5 pages, 6 figure
Hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet
Superconductivity in layered copper-oxide compounds emerges when charge
carriers are added to antiferromagnetically-ordered CuO2 layers. The carriers
destroy the antiferromagnetic order, but strong spin fluctuations persist
throughout the superconducting phase and are intimately linked to
super-conductivity. Neutron scattering measurements of spin fluctuations in
hole-doped copper oxides have revealed an unusual `hour-glass' feature in the
momentum-resolved magnetic spectrum, present in a wide range of superconducting
and non-superconducting materials. There is no widely-accepted explanation for
this feature. One possibility is that it derives from a pattern of alternating
spin and charge stripes, an idea supported by measurements on stripe-ordered
La1.875Ba0.125CuO4. However, many copper oxides without stripe order also
exhibit an hour-glass spectrum$. Here we report the observation of an
hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the
family of superconducting copper oxides. Our system has stripe correlations and
is an insulator, which means its magnetic dynamics can conclusively be ascribed
to stripes. The results provide compelling evidence that the hour-glass
spectrum in the copper-oxide superconductors arises from fluctuating stripes.Comment: 13 pages, 4 figures, to appear in Natur
Magnetic excitations and electronic interactions in SrCuTeO: a spin-1/2 square lattice Heisenberg antiferromagnet
SrCuTeO presents an opportunity for exploring low-dimensional
magnetism on a square lattice of Cu ions. We employ ab initio
multi-reference configuration interaction calculations to unravel the Cu
electronic structure and to evaluate exchange interactions in SrCuTeO.
The latter results are validated by inelastic neutron scattering using linear
spin-wave theory and series-expansion corrections for quantum effects to
extract true coupling parameters. Using this methodology, which is quite
general, we demonstrate that SrCuTeO is an almost realization of a
nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling
of 7.18(5) meV.Comment: 10 pages, 7 figure
- …