390 research outputs found
Vortex-antivortex wavefunction of a degenerate quantum gas
A mechanism of a pinning of the quantized matter wave vortices by optical
vortices in a specially arranged optical dipole traps is discussed. The
vortex-antivortex optical arrays of rectangular symmetry are shown to transfer
angular orbital momentum and form the "antiferromagnet"-like matter waves. The
separable Hamiltonian for matter waves in pancake trapping geometry is proposed
and 3D-wavefunction is factorized in a product of wavefunctions of the 1D
harmonic oscillator and 2D vortex-antivortex quantum state. The 2D
wavefunction's phase gradient field associated via Madelung transform with the
field of classical velocities forms labyrinth-like structure. The macroscopic
quantum state composed of periodically spaced counter-rotating BEC superfluid
vortices has zero angular momentum and nonzero rotational energy.Comment: 11 pages, 5 figure
Multipole interaction between atoms and their photonic environment
Macroscopic field quantization is presented for a nondispersive photonic
dielectric environment, both in the absence and presence of guest atoms.
Starting with a minimal-coupling Lagrangian, a careful look at functional
derivatives shows how to obtain Maxwell's equations before and after choosing a
suitable gauge. A Hamiltonian is derived with a multipolar interaction between
the guest atoms and the electromagnetic field. Canonical variables and fields
are determined and in particular the field canonically conjugate to the vector
potential is identified by functional differentiation as minus the full
displacement field. An important result is that inside the dielectric a dipole
couples to a field that is neither the (transverse) electric nor the
macroscopic displacement field. The dielectric function is different from the
bulk dielectric function at the position of the dipole, so that local-field
effects must be taken into account.Comment: 17 pages, to be published in Physical Review
Extensive dynamics of Plasmodium falciparum densities, stages and genotyping profiles
<p>Abstract</p> <p>Background</p> <p>Individuals living in areas of high malaria transmission often have different <it>Plasmodium falciparum </it>clones detected in the peripheral blood over time. The aim of this study was to assess the dynamics of asymptomatic <it>P. falciparum </it>infections in a few hours intervals.</p> <p>Methods</p> <p>Capillary blood samples were collected 6-hourly during five days from asymptomatic children in a highly endemic area in Tanzania. Parasite densities and maturation stages were investigated by light microscopy. Types and number of clones were analysed by PCR based genotyping of the polymorphic merozoite surface proteins 1 and 2 genes. Results: Parasite densities and maturation stages fluctuated 48-hourly with a gradual shift into more mature forms. Various genotyping patterns were observed in repeated samples over five days with only few samples with identical profiles. Up to six alleles differed in samples collected six hours apart in the same individual.</p> <p>Conclusion</p> <p>This detailed assessment highlights the extensive within-host dynamics of <it>P. falciparum </it>populations and the limitations of single blood samples to determine parasite densities, stages and genotyping profiles in a malaria infected individual.</p
Holographic current correlators at finite coupling and scattering off a supersymmetric plasma
By studying the effect of the order(\alpha'^3) string theory corrections to
type IIB supergravity, including those corrections involving the Ramond-Ramond
five-form field strength, we obtain the corrected equations of motion of an
Abelian perturbation of the AdS_5-Schwarzschild black hole. We then use the
gauge theory/string theory duality to examine the coupling-constant dependence
of vector current correlators associated to a gauged U(1) sub-group of the
global R-symmetry group of strongly-coupled N=4 supersymmetric Yang-Mills
theory at finite temperature. The corrections induce a set of higher-derivative
operators for the U(1) gauge field, but their effect is highly suppressed. We
thus find that the order(\alpha'^3) corrections affect the vector correlators
only indirectly, through the corrected metric. We apply our results to
investigate scattering off a supersymmetric Yang-Mills plasma at low and high
energy. In the latter regime, where Deep Inelastic Scattering is expected to
occur, we find an enhancement of the plasma structure functions in comparison
with the infinite 't Hooft coupling result.Comment: 38 pages, 6 figures, minor clarifications added, typos corrected,
references adde
Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions
Multi-phonon Raman scattering in semiconductor nanocrystals is treated taking
into account both adiabatic and non-adiabatic phonon-assisted optical
transitions. Because phonons of various symmetries are involved in scattering
processes, there is a considerable enhancement of intensities of multi-phonon
peaks in nanocrystal Raman spectra. Cases of strong and weak band mixing are
considered in detail. In the first case, fundamental scattering takes place via
internal electron-hole states and is participated by s- and d-phonons, while in
the second case, when the intensity of the one-phonon Raman peak is strongly
influenced by the interaction of an electron and of a hole with interface
imperfections (e. g., with trapped charge), p-phonons are most active.
Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a
good quantitative agreement with recent experimental results.Comment: 16 pages, 2 figures, E-mail addresses: [email protected],
[email protected], [email protected], accepted for publication in
Physical Review
Plasma photoemission from string theory
Leading 't Hooft coupling corrections to the photoemission rate of the planar
limit of a strongly-coupled {\cal {N}}=4 SYM plasma are investigated using the
gauge/string duality. We consider the full order \alpha'^3 type IIB string
theory corrections to the supergravity action, including higher order terms
with the Ramond-Ramond five-form field strength. We extend our previous results
presented in arXiv:1110.0526. Photoemission rates depend on the 't Hooft
coupling, and their curves suggest an interpolating behaviour from strong
towards weak coupling regimes. Their slopes at zero light-like momentum give
the electrical conductivity as a function of the 't Hooft coupling, in full
agreement with our previous results of arXiv:1108.6306. Furthermore, we also
study the effect of corrections beyond the large N limit.Comment: 36 pages, 5 figures, paragraph added in the conclusions, references
added, typos correcte
Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity
Genetic diversity and transmissibility of imported Plasmodium vivax in Qatar and three countries of origin
Malaria control program in the Arabian Peninsula, backed by adequate logistical support, has interrupted transmission with exception of limited sites in Saudi Arabia and sporadic outbreaks in Oman. However, sustained influx of imported malaria represents a direct threat to the above success. Here we examined the extent of genetic diversity among imported P. vivax in Qatar, and its ability to produce gametocytes, compared to parasites in main sites of imported cases, the Indian subcontinent (india) and East Africa (Sudan and Ethiopia). High diversity was seen among imported P. vivax in Qatar, comparable to parasites in the Indian subcontinent and East Africa. Limited genetic differentiation was seen among imported P. vivax, which overlapped with parasites in India, but differentiated from that in Sudan and Ethiopia. Parasite density among imported cases, ranged widely between 26.25–7985934.1 Pv18S rRNA copies/µl blood, with a high prevalence of infections carried gametocytes detectable by qRT-PCR. Parasitaemia was a stronger predictor for P. vivax gametocytes density (r = 0.211, P = 0.04). The extensive diversity of imported P. vivax and its ability to produce gametocytes represent a major threat for re-introduction of malaria in Qatar. The genetic relatedness between P. vivax reported in Qatar and those in India suggest that elimination strategy should target flow and dispersal of imported malaria into the region
Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms
Purpose Fabrication of a suitable flow model or phantom is critical to the study of biomedical fluid dynamics using optical flow visualization and measurement methods. The main difficulties arise from the optical properties of the model material, accuracy of the geometry and ease of fabrication. Methods Conventionally an investment casting method has been used, but recently advancements in additive manufacturing techniques such as 3D printing have allowed the flow model to be printed directly with minimal post-processing steps. This study presents results of an investigation into the feasibility of fabrication of such models suitable for particle image velocimetry (PIV) using a common 3D printing Stereolithography process and photopolymer resin. Results An idealised geometry of a cerebral aneurysm was printed to demonstrate its applicability for PIV experimentation. The material was shown to have a refractive index of 1.51, which can be refractive matched with a mixture of de-ionised water with ammonium thiocyanate (NH4SCN). The images were of a quality that after applying common PIV pre-processing techniques and a PIV cross-correlation algorithm, the results produced were consistent within the aneurysm when compared to previous studies. Conclusions This study presents an alternative low-cost option for 3D printing of a flow phantom suitable for flow visualization simulations. The use of 3D printed flow phantoms reduces the complexity, time and effort required compared to conventional investment casting methods by removing the necessity of a multi-part process required with investment casting techniques
Plasma conductivity at finite coupling
By taking into account the full order(\alpha'^3) type IIB string theory
corrections to the supergravity action, we compute the leading finite 't Hooft
coupling order(\lambda^{-3/2}) corrections to the conductivity of
strongly-coupled SU(N) {\cal {N}}=4 supersymmetric Yang-Mills plasma in the
large N limit. We find that the conductivity is enhanced by the corrections, in
agreement with the trend expected from previous perturbative weak-coupling
computations.Comment: 19 page
- …