9 research outputs found

    There and back again: historical perspective and future directions for Vaccinium breeding and research studies

    Get PDF
    The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related trait

    Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry (\u3cem\u3eVaccinium corymbosum\u3c/em\u3e L.), DarrowĂąs Blueberry (\u3cem\u3eV. darrowii\u3c/em\u3e Camp), and Rabbiteye Blueberry (\u3cem\u3eV. virgatum\u3c/em\u3e Aiton)

    Get PDF
    Plants are inhabited by millions of parasitic, commensal, and mutualistic microorganisms that coexist in complex ecological communities, and profoundly affect the plant’s productivity, health, and capacity to cope with environmental stress. Therefore, a better understanding of the rhizosphere microbiome may open a yet untapped avenue for the rational exploitation of beneficial plant–microbe interactions in modern agriculture. Blueberries encompass several wild and cultivated species of shrubs of the genus Vaccinium that are native to North America. They are grown commercially for the production of fruits, which are considered a health food due to the rich content of minerals, trace elements, and phenolic compounds with antioxidant, antitumor, and anti-inflammatory properties. Despite a long history of breeding and extensive commercial use, remarkably little is known about the composition and function of the blueberry root microbiome. To address this gap, we employed molecular approaches to characterize and compare microbial communities inhabiting the roots of rabbiteye blueberry (Vaccinium virgatum), Darrow’s blueberry (Vaccinium darrowii), and southern highbush blueberry (SHB; an interspecific hybrid of Vaccinium corymbosum and V. darrowii). Our results revealed that these plant species share a common core rhizobiome, but at the same time differ significantly in the diversity, relative abundance, richness, and evenness of multiple groups of prokaryotic and eukaryotic microorganisms. Although the host signature effects were especially pronounced at the plant species level, we also observed genotype-level variations in the distribution of specific microbial taxa, which suggests that the assembly of the blueberry microbiome is shaped by the plant genotype and modifications associated with the domestication and breeding of members of the Vaccinium genus. We also demonstrated that the studied Vaccinium species differ in the abundance of beneficial rhizobacteria and ericoid mycorrhizal fungi, which play a vital role in their adaptation to soils with low pH and slow turnover of organic matter

    Comparison of Whole Plant and Detached Leaf Screening Techniques for Identifying Anthracnose Resistance in Strawberry Plants

    No full text
    Anthracnose is a destructive disease of strawberry caused by several Colletotrichum species including C. acutatum, C. fragariae, and C. gloeosporioides. Identification of anthracnose resistant strawberry germplasm has commonly relied on inoculation of whole plants with isolates of these pathogens. In this study, whole plants and detached leaves from 81 germplasm lines were inoculated with a conidial suspension of isolates of C. acutatum, C. fragariae, and C. gloeosporioides, incubated in the dark at 30°C, 100% relative humidity, for 48 h, and assessed for disease severity based on symptoms on inoculated petioles and leaves. The correlation between the disease severity ratings of the whole plants rated 30 days after inoculation and detached leaves rated 5 days after inoculation was determined. Based on leaf symptoms and petiole lesions, the association between the whole plant leaf disease severity rating (DSR) and detached leaf DSR was positive (rp = 0.70), and the association between the whole plant DSR and the detached leaf DSR was also positive (rp = 0.66). Whole plant and detached leaf DSRs were used to assign each germplasm line to a resistance category, and a posthoc Tukey’s test showed that the whole plant DSR means and the detached leaf DSR means for each resistance category differed significantly at p \u3c 0.05. This research was used to develop a strawberry detached leaf assay which can reliably and quickly determine the degree of resistance of strawberry germplasm to anthracnose

    Evaluation of One-Time Applications of Foliar Applied Auxin Co-Applied with Surfactant for Use in Commercial Cutting Propagation

    No full text
    Use of foliar auxin applications are increasing in the nursery and greenhouse industry. However, previous research has shown that insufficient auxin is absorbed or translocated to the site of action when foliar auxin applications are used. It is theorized that adding surfactants to foliar applications of auxin may help with the absorption and translocation of auxin to the site of action. Research was conducted to determine whether adding surfactants to one-time foliar applications of indole-3-butyric acid (IBA) would be as effective as the current industry standard, the basal quick-dip. Terminal, semi-hardwood cuttings of Red Cascade™ miniature climbing rose (Rosa ‘MOORcap’), common camellia (Camellia japonica) and ‘Southern Charm’ magnolia (Magnolia grandiflora ‘Southern Charm’) were sprayed to the drip point using Hortus IBA Water Soluble Salts™ at concentrations of 0 ppm, 50 ppm, 75 ppm, or 100 ppm for rose cuttings or 0 ppm, 500 ppm, 1000 ppm, or 1500 ppm IBA for camellia or magnolia. To serve as an industry control, the basal end of cuttings was immersed for 3-s in a solution of either 250 ppm, 4000 ppm or 2500 ppm for rose, camellia, or magnolia, respectively. A foliar application of 1500 ppm after sticking was as effective as the basal quick-dip for cuttings of ‘Southern Charm’, while other spray treatments were less effective. A basal quick-dip was more effective than a foliar spray for rooting cuttings of camellia. Auxin rate had no impact on rooting of Red Cascade™ miniature rose. The goal of commercial plant propagation is to produce high-quality rooted cuttings as quickly as possible. Plant propagation places a large demand on labor within the nursery industry, with one recent report being that labor accounts for >50% of a nursery’s budget. Our results from this trial affirm the results reported by similar trials into foliar applications of auxin suggests that the benefits of foliar applications are species dependent Further work is warranted on examining other auxin and surfactant formulations

    Genome-Wide Association Mapping of Crown Rust Resistance in Oat Elite Germplasm

    No full text
    Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location–years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance
    corecore