4 research outputs found
Recommended from our members
Directional scattering by the hyperbolic-medium antennas and silicon particles
Optical antennas made out of materials with hyperbolic dispersion is an alternative approach to realizing efficient subwavelength scatterers and may overcome limitations imposed by plasmonic and all-dielectric designs. Recently emerged natural hyperbolic material hexagonal boron nitride supports phonon-polariton excitations with low optical losses and high anisotropy. Here we study scattering properties of the hyperbolic-medium (HM) antennas, and in particular, we consider a combination of two types of the particles - HM bars and silicon spheres - arranged in a periodic array. We analyze excitation of electric and magnetic resonances in the particles and effect of their overlap in the array. We theoretically demonstrate that decrease of reflectance from the array can be achieved with appropriate particle dimensions where electric and magnetic resonances of different particle types overlap, and the resonance oscillations are in phase. In this case, generalized Kerker condition is satisfied, and particle dimers in the array efficiently scatter light in the forward direction. The effect can be used in designing metasurfaces based on hexagonal boron nitride scatterers with an application in mid-infrared photonics.6 month embargo; published online: 30 January 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Applicability of multipole decomposition to plasmonic- and dielectric-lattice resonances
Periodic nanoparticle arrays have attracted considerable interest recently since the lattice effect can lead to spectrally narrow resonances and tune the resonance position in a broad range. Multipole decomposition is widely used to analyze the role of the multipoles in the resonance excitations, radiation, and scattering of electromagnetic waves. However, previous studies have not addressed the validity and accuracy of the multipole decomposition around the lattice resonance. The applicability of the exact multipole decomposition based on spherical harmonics expansion has not been demonstrated around the lattice resonance with the strong multipole coupling. This work studies the two-dimensional periodic arrays of both plasmonic and dielectric nanospheres and compares the multipole decomposition results with the analytic ones around their lattice resonances. We study both the effective polarizabilities of multipoles and the scattering spectra of the structures. The analytical results are calculated from the coupled dipole-quadrupole model. This study demonstrates that the exact multipole decomposition agrees well with the numerical simulation around lattice resonances. Only a small number of multipoles are required to represent the results accurately. © 2022 Author(s).12 month embargo; published online: 15 March 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Transmission and reflection features of all-dielectrics metasurfaces with electric and magnetic resonances
The effective multipole decomposition approach is applied to study the optical features of the silicon metasurface in the near-infrared. The spectral regions of perfect transmission and reflection have been analyzed using the Cartesian multipole decomposition. It is shown that transmission peaks appear due to the mutual interaction of multipole moments up to the third order, while reflection peaks are due to the dominant contribution of one of the multipole moments. The results of this work can be broadly applied to design novel metasurfaces, sensors, and optical filters