1,230 research outputs found

    On the Kondo effect in carbon nanotubes at half halfing

    Get PDF
    In a single state of a quantum dot the Kondo effect arises due to the spin-degeneracy, which is present if the dot is occupied with one electron (N = 1). The eigenstates of a carbon nanotube quantum dot possess an additional orbital degeneracy leading to a four-fold shell pattern. This additional degeneracy increases the possibility for the Kondo effect to appear. We revisit the Kondo problem in metallic carbon nanotubes by linear and non-linear transport measurement in this regime, in which the four-fold pattern is present. We have analyzed the ground state of CNTs, which were grown by chemical vapor deposition, at filling N = 1, N = 2, and N = 3. Of particular interest is the half-filled shell, i.e. N = 2. In this case, the ground state is either a paired electron state or a state for which the singlet and triplet states are effectively degenerate, allowing in the latter case for the appearance of the Kondo effect. We deduce numbers for the effective missmatch d of the levels from perfect degeneracy and the exchange energy J. While d ~ 0.1 - 0.2 (in units of level spacing) is in agreement with previous work, the exchange term is found to be surprisingly small: J < 0.02. In addition we report on the observation of gaps, which in one case is seen at N = 3 and in another is present over an extended sequence of levels.Comment: full paper including figures at: http://www.unibas.ch/phys-meso/Research/Papers/2004/Kondo-4shell-SWNT.pd

    PRACTICE

    Get PDF
    Past training as an athlete has driven me to reach for the unattainable goal of flawlessness. This mentality, which I apply to jewelry making, has led me to recreate the intricate angles of the athletic body and the beauty of its movements. I use gymnastics imagery within my work as a tool to communicate how we learn and understand through practice and repetition. With shifted lines, skewed shapes and geometric wirework, the jewelry tumbles over the architecture of the wearer’s body. The repetitive metal forms come together to simulate movement and enhance the physical language that a body in motion can suggests

    Geoeconomics in a changing global order

    Get PDF

    Probability density functions of work and heat near the stochastic resonance of a colloidal particle

    Get PDF
    We study experimentally and theoretically the probability density functions of the injected and dissipated energy in a system of a colloidal particle trapped in a double well potential periodically modulated by an external perturbation. The work done by the external force and the dissipated energy are measured close to the stochastic resonance where the injected power is maximum. We show a good agreement between the probability density functions exactly computed from a Langevin dynamics and the measured ones. The probability density function of the work done on the particle satisfies the fluctuation theorem

    Towards the production of 50'000 tonnes of low-carbon steel sheet for the LHC superconducting dipole and quadrupole magnets

    Get PDF
    A total of 50'000 tonnes of low-carbon steel sheet has been ordered for the LHC main magnets. After three years of production, about 10'000 tonnes of steel sheet have been produced by Cockerill-Sambre Groupe Usinor. This paper gives a summary of the manufacturing process and improvements implemented as well as an overview of the difficulties encountered during this production. Preliminary statistics obtained for the mechanical and magnetic steel properties are presented

    Superconducting and Normal State Properties of Neutron Irradiated MgB2

    Full text link
    We have performed a systematic study of the evolution of the superconducting and normal state properties of neutron irradiated MgB2_2 wire segments as a function of fluence and post exposure annealing temperature and time. All fluences used suppressed the transition temperature, Tc, below 5 K and expanded the unit cell. For each annealing temperature Tc recovers with annealing time and the upper critical field, Hc2(T=0), approximately scales with Tc. By judicious choice of fluence, annealing temperature and time, the Tc of damaged MgB2 can be tuned to virtually any value between 5 and 39 K. For higher annealing temperatures and longer annealing times the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters.Comment: Updated version, to appear in Phys. Rev.

    Effects of Robotic Knee Exoskeleton on Human Energy Expenditure

    Full text link

    Constraints on Gravitational Scaling Dimensions from Non-Local Effective Field Equations

    Get PDF
    Quantum corrections to the classical field equations, induced by a scale dependent gravitational constant, are analyzed in the case of the static isotropic metric. The requirement of general covariance for the resulting non-local effective field equations puts severe restrictions on the nature of the solutions that can be obtained. In general the existence of vacuum solutions to the effective field equations restricts the value of the gravitational scaling exponent ν1\nu^{-1} to be a positive integer greater than one. We give further arguments suggesting that in fact only for ν1=3\nu^{-1}=3 consistent solutions seem to exist in four dimensions.Comment: 14 page
    corecore