6 research outputs found

    Description, identification, and growth of Tuber borchii Vittad. mycorrhized Pinus sylvestris L. seedlings on different lime contents

    Get PDF
    Tuber borchii forms ectomycorrhiza with oaks, hazel, and pines, including Pinus sylvestris. However, its ectomycorrhiza morphotype with P. sylvestris was not comprehensively described so far, and molecular analyses are missing despite a high danger of misidentification of T. borchii ectomycorrhiza with other closely related and less valuable truffle species. We described for the first time the morphology and anatomy of T. borchii-P. sylvestris ectomycorrhiza using differential interference contrast technique and semi-thin sections in combination with molecular confirmation of identity. Color of ectomycorrhiza is reddish to dark brown, and morphotypes are unevenly but densely covered by warts-bearing pin-like cystidia. All layers of the hyphal mantle are pseudoparenchymatous with outer mantle layer formed of epidermoid cells. T. borchii ectomycorrhiza was identified by a molecular comparison with fruitbodies used for inoculation and its respective ectomycorrhizae. T. borchii has a wide ecological amplitude. To get a better insight in mycorrhization requirements, we investigated growth of P. sylvestris and its ectomycorrhiza infection rate with T. borchii in substrate with different lime content. The mycorrhization of P. sylvestris with T. borchii in the mycorrhization substrate and cultivation in greenhouse conditions was successful, with colonization of P. sylvestris varying between 36.5 and 48.1%. There was no significant correlation of mycorrhization to applied lime contents, and consequently to pH in substrate, while the increased levels of lime improved growth of the P. sylvestris seedlings

    Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L.

    Get PDF
    Despite its broad host range and distribution and its potential applications in commercial plantation forests, comprehensive descriptions of Scleroderma ectomycorrhizae are available only for Scleroderma citrinum, Scleroderma bovista and Scleroderma sinnamariense. This study provides a morphological and anatomical description of tree nursery derived ectomycorrhizae of Scleroderma areolatum on Fagus sylvatica, grown for several years in a climatized room. Ectomycorrhizae of S. areolatum were silvery white with abundant rhizomorphs; all mantle layers were plectenchymatous, rhizomorphs of type E, with prominent emanating hyphae with thick cell wall. The distal ends of emanating hyphae of rhizomorphs were inflated and often merged with other emanating hyphae. All parts of the mycorrhiza were clampless. In hyphae of the outer mantle layer, rhizomorphs and emanating hyphae, oily droplets were observed that did not stain in sulfo-vanillin and disappeared in lactic acid after a few hours. Although the phylogenetic analysis positioned the newly described ectomycorrhiza together with Scleroderma verrucosum and Scleroderma cepa in a single clade with a taxon name SH005470.07FU, the ectomycorrhizae of these three species can be morphologically well separated based on rhizomorph type

    Molecular and morphological analyses confirm Rhizopogon verii as a widely distributed ectomycorrhizal false truffle in Europe, and its presence in South America

    Get PDF
    The genus Rhizopogon includes species with hypogeous or subepigeus habit, forming ectomycorrhizae with naturally occurring or planted pines (Pinaceae). Species of the genus Rhizopogon can be distinguished easily from the other hypogeous basidiomycetes by their lacunose gleba without columella and their smooth elliptical spores; however, the limit between species is not always easy to establish. Rhizopogon luteolus, the type species of the genus, has been considered one of the species that are more abundant in Europe, as well as it has been cited in pine plantation of North and South America, different parts of Africa, Australia, and New Zealand. However, in this study, based on molecular analyses of the ITS nuclear ribosomal DNA (nrDNA) sequences (19 new sequences; 37 sequences from GenBank/UNITE, including those from type specimens), we prove that many GenBank sequences under R. luteolus were misidentified and correspond to Rhizopogon verii, a species described from Tunisia. Also, we confirm that basidiomes and ectomycorrhizae recently collected in Germany under Pinus sylvestris, as well as specimens from South of Brazil under Pinus taeda belong to R. verii. Thanks to the numerous ectomycorrhizal tips collected in Germany, a complete description of R. verii/P. sylvestris ectomycorrhiza is provided. Moreover, since in this paper the presence of R. verii in South America is here reported for the first time, a short description of basidiomes collected in Brazil, compared with collections located in different European herbaria, is included
    corecore