156 research outputs found

    Pilot Project Funding Opportunities

    Get PDF
    Learn about funding opportunities offered through the UMCCTS in the 2012-2013 academic year. Bill Thomas and Greg Babcock describe the resources available at MassBiologics and the new Next Hundred Million Pilot Program funding opportunity

    The Expression Pattern of Epstein-Barr Virus Latent Genes In Vivo Is Dependent upon the Differentiation Stage of the Infected B Cell

    Get PDF
    AbstractEpstein-Barr virusโ€“infected B cells in vivo demonstrate three distinct patterns of latent gene expression, depending on the differentiation stage of the cell. Tonsillar naive B cells express the EBNA2-dependent lymphoblastoid phenotype, characteristic of direct infection. Germinal center centroblasts and centrocytes as well as tonsillar memory B cells express a more restricted pattern of latent genes (EBNA1(Q-K)+, LMP1+, LMP2+, EBNA2โˆ’) that has only been seen previously in EBV-positive tumors. Peripheral memory cells express an even more restricted pattern where no latent genes are expressed, with the possible exception of LMP2. These results are consistent with a model where EBV uses the normal biology of B lymphocytes to gain access to and persist within the long-lived memory B cell compartment

    Blockade of HIV-1 Infection of New World Monkey Cells Occurs Primarily at the Stage of Virus Entry

    Get PDF
    HIV-1 naturally infects chimpanzees and humans, but does not infect Old World monkeys because of replication blocks that occur after virus entry into the cell. To understand the species-specific restrictions operating on HIV-1 infection, the ability of HIV-1 to infect the cells of New World monkeys was examined. Primary cells derived from common marmosets and squirrel monkeys support every phase of HIV-1 replication with the exception of virus entry. Efficient HIV-1 entry typically requires binding of the viral envelope glycoproteins and host cell receptors, CD4 and either CCR5 or CXCR4 chemokine receptors. HIV-1 did not detectably bind or utilize squirrel monkey CD4 for entry, and marmoset CD4 was also very inefficient compared with human CD4. A marmoset CD4 variant, in which residues 48 and 59 were altered to the amino acids found in human CD4, supported HIV-1 entry efficiently. The CXCR4 molecules of both marmosets and squirrel monkeys supported HIV-1 infection, but the CCR5 proteins of both species were only marginally functional. These results demonstrate that the CD4 and CCR5 proteins of New World monkeys represent the major restriction against HIV-1 replication in these primates. Directed adaptation of the HIV-1 envelope glycoproteins to common marmoset receptors might allow the development of New World monkey models of HIV-1 infection

    N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins

    Get PDF
    AbstractCXCR4 is a co-receptor along with CD4 for human immunodeficiency virus type 1 (HIV-1). We investigated the role of N-linked glycosylation in the N-terminus of CXCR4 in binding to HIV-1 gp120 envelope glycoproteins. Gp120s from CXCR4 (X4) and CCR5 (R5) using HIV-1 strains bound more efficiently to non-N-glycosylated than to N-glycosylated CXCR4 proteoliposomes in a CD4-dependent manner. Similar results were observed in binding studies using non-N-glycosylated or N-glycosylated CXCR4 expressed on cells. Mutation of the N-glycosylation site N11 in CXCR4 (N11Q-CXCR4) enhanced CD4-dependent binding of X4 and R5 gp120s and allowed more efficient entry of viruses pseudotyped with X4 or R5 HIV-1 envelope glycoproteins. However, the binding of R5 gp120 to N11Q-CXCR4 and entry of R5 HIV-1 viruses into cells expressing N11Q-CXCR4 were 20- and 100- to 1000-fold less efficient, respectively, than the levels achieved using X4 gp120 or X4 HIV-1 viruses. Binding of stromal cell-derived factor (SDF)-1ฮฑ, the natural ligand of CXCR4, and SDF-1ฮฑ-induced signaling were reduced by the N11Q mutation. These findings demonstrate that N-glycosylation at N11 inhibits the binding of CXCR4 to X4 and R5 HIV-1 gp120, and provide a better understanding of the structural elements of CXCR4 involved in HIV-1 Envโ€“co-receptor interactions

    The use of live attenuated influenza vaccine (LAIV) in healthcare personnel (HCP): Guidance from the society for healthcare epidemiology of America (SHEA)

    Get PDF
    Because of the live viral backbone of live attenuated influenza vaccine (LAIV), questions have arisen regarding infection control precautions and restrictions surrounding its use in healthcare personnel (HCP). This document provides guidance from the Society for Healthcare Epidemiology of America regarding use of LAIV in HCP and the infection control precautions that are recommended with its use in this population. Infect Control Hosp Epidemiol 2012;33(10):981-98

    Identification of a Human Monoclonal Antibody to Replace Equine Diphtheria Anti-toxin for the Treatment of Diphtheria

    Get PDF
    Diphtheria anti-toxin (DAT) has been used to treat Corynebacterium diphtheriae infection for over one hundred years. While the global incidence of diphtheria has declined in the 20th century, the disease remains endemic in many parts of the world and significant outbreaks still occur. Diphtheria anti-toxin is an equine polyclonal antibody with considerable side effects that is in critically short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we cloned human monoclonal antibodies (HuMabs) directly from antibody secreting cells of human volunteers immunized with Td vaccine. We isolated a diverse panel of HuMabs that recognized diphtheria toxoid and recombinant protein fragments of diphtheria toxin. Forty-one unique HuMabs were expressed in 293T cells and tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays. The lead candidate HuMab, 315C4 potently neutralized diphtheria toxin with an EC50 of 0.65 ng/mL. Additionally, 25 ฮผg of 315C4 completely protected guinea pigs in an in vivo lethality model. In comparison, 1.6 IU of DAT was necessary for full protection resulting in an estimated relative potency of 64 IU/mg for 315C4. We further established that our lead candidate HuMab binds to the receptor binding domain of diphtheria toxin and blocks the toxin from binding to the putative receptor, heparin binding-epidermal growth factor like growth factor. The discovery of a specific and potent neutralizing antibody against diphtheria toxin holds promise as a potential human therapeutic and is being developed for human use

    Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters

    Get PDF
    Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea, and recent outbreaks of strains with increased virulence underscore the importance of identifying novel approaches to treat and prevent relapse of Clostridium difficile-associated diarrhea (CDAD). CDAD pathology is induced by two exotoxins, toxin A and toxin B, which have been shown to be cytotoxic and, in the case of toxin A, enterotoxic. In this report we describe fully human monoclonal antibodies (HuMAbs) that neutralize these toxins and prevent disease in hamsters. Transgenic mice carrying human immunoglobulin genes were used to isolate HuMAbs that neutralize the cytotoxic effects of either toxin A or toxin B in cell-based in vitro neutralization assays. Three anti-toxin A HuMAbs (3H2, CDA1, and 1B11) could all inhibit the enterotoxicity of toxin A in mouse intestinal loops and the in vivo toxicity in a systemic mouse model. Four anti-toxin B HuMAbs (MDX-1388, 103-174, 1G10, and 2A11) could neutralize cytotoxicity in vitro, although systemic toxicity in the mouse could not be neutralized. Anti-toxin A HuMAb CDA1 and anti-toxin B HuMAb MDX-1388 were tested in the well-established hamster model of C. difficile disease. CDA1 alone resulted in a statistically significant reduction of mortality in hamsters; however, the combination treatment offered enhanced protection. Compared to controls, combination therapy reduced mortality from 100% to 45% (P\u3c0.0001) in the primary disease hamster model and from 78% to 32% (P\u3c0.0001) in the less stringent relapse model

    Human Monoclonal Antibody HCV1 Effectively Prevents and Treats HCV Infection in Chimpanzees

    Get PDF
    Hepatitis C virus (HCV) infection is a leading cause of liver transplantation and there is an urgent need to develop therapies to reduce rates of HCV infection of transplanted livers. Approved therapeutics for HCV are poorly tolerated and are of limited efficacy in this patient population. Human monoclonal antibody HCV1 recognizes a highly-conserved linear epitope of the HCV E2 envelope glycoprotein (amino acids 412-423) and neutralizes a broad range of HCV genotypes. In a chimpanzee model, a single dose of 250 mg/kg HCV1 delivered 30 minutes prior to infusion with genotype 1a H77 HCV provided complete protection from HCV infection, whereas a dose of 50 mg/kg HCV1 did not protect. In addition, an acutely-infected chimpanzee given 250 mg/kg HCV1 42 days following exposure to virus had a rapid reduction in viral load to below the limit of detection before rebounding 14 days later. The emergent virus displayed an E2 mutation (N415K/D) conferring resistance to HCV1 neutralization. Finally, three chronically HCV-infected chimpanzees were treated with a single dose of 40 mg/kg HCV1 and viral load was reduced to below the limit of detection for 21 days in one chimpanzee with rebounding virus displaying a resistance mutation (N417S). The other two chimpanzees had 0.5-1.0 log(10) reductions in viral load without evidence of viral resistance to HCV1. In vitro testing using HCV pseudovirus (HCVpp) demonstrated that the sera from the poorly-responding chimpanzees inhibited the ability of HCV1 to neutralize HCVpp. Measurement of antibody responses in the chronically-infected chimpanzees implicated endogenous antibody to E2 and interference with HCV1 neutralization although other factors may also be responsible. These data suggest that human monoclonal antibody HCV1 may be an effective therapeutic for the prevention of graft infection in HCV-infected patients undergoing liver transplantation

    Predictors of Performance during a 161 km Mountain Footrace

    Get PDF
    Training volume and cardiovascular dynamics influence endurance performance. However, there is limited information on the interplay between training volume, cardiovascular dynamics, and performance in ultra-marathon athletes. PURPOSE: We aimed to determine predictors of performance in finishers of the 2023 Western States Endurance Run (WSER). METHODS: Sixty participants who finished the race (49 males/11 females; mean age: 44.7 ยฑ 9.6 y, range: 26โ€“66 y; BMI: 22.7 ยฑ 2.2 kg/m2) completed pre-race surveys including average training volume (AV) and peak training volume (PV), as well as resting cardiovascular measures including resting heart rate (RHR) and augmentation index (AIx), a measure of wave reflection characteristics. Based on WSER completion time, we calculated average running velocity (RV). We assessed associations among 22 variables using bivariate correlation analysis (Pearsonโ€™s Correlation for normally distributed data and Spearmanโ€™s Rank Correlation if normality was not met). Within our listed variables, normality was met in age and AV. Additionally, we completed multiple regression analyses for predictors. We present descriptive data as mean ยฑ SD. RESULTS: Participants had an average RV of 6.33 ยฑ 0.97 km/h (3.93 ยฑ 0.6 mph), and reported an AV of 91.9 ยฑ 24.5 km/wk (57.1 ยฑ 15.2 miles/wk) and a PV of 141.0 ยฑ 47.2 km/wk (87.6 ยฑ 29.3 miles/wk). We observed significant associations between RV and age (r(58) = -0.57, p r(58) = 0.41, p r(58) = 0.34, p R2 = 0.37; F(3,56) = 12.4, pb1 = 0.013; t(56) = 2.57, p = 0.013), resulting in a 0.33 km/h increase in RV for every 25-km increase in AV. Last, significant relations existed between RV and AIx (r(58) = -0.30, p = 0.022); and RHR (r(58) = -0.26, p = 0.046). CONCLUSION: We found that (1) average weekly training volume is a significant predictor of performance in elite ultra-marathon athletes and (2) race performance was inversely associated with resting arterial wave reflection characteristics and heart rate
    • โ€ฆ
    corecore