5 research outputs found

    Site Specific Ground Motion Modeling and Seismic Response Analysis for Microzonation of Baku, Azerbaijan

    Get PDF
    We investigated ground response for Baku (Azerbaijan) from two earthquakes of magnitude M6.3 occurred in Caspian Sea (characterized as a near event) and M7.5 in Shamakhi (characterized as a remote extreme event). S-wave velocity with the average shear wave velocity over the topmost 30 m of soil is obtained by experimental method from the V P values measured for the soils. The downtown part of Baku city is characterized by low VS30 values (< 250 m/s), related to sand, water-saturated sand, gravel-pebble, and limestone with clay. High surface PGA of 240 gal for the M7.5 event and of about 190 gal for the M6.3 event, and hence a high ground motion amplification, is observed in the shoreline area, through downtown, in the north-west, and in the east parts of Baku city with soft clays, loamy sands, gravel, sediments

    Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments

    Full text link
    The Greater Caucasus orogen on the southern margin of Eurasia is hypothesized to be a young collisional system and may present an opportunity to probe the structural, sedimentary and geodynamic effects of continental collision. We present detrital zircon U‐Pb age data from the Caucasus region that constrain changes in sediment routing and source exposure during the late Cenozoic convergence and collision between the Greater Caucasus orogen and the Lesser Caucasus, an arc terrane on the lower plate of the system. During Oligocene to Middle Miocene time, following the initiation of deformation within the Greater Caucasus, marine sandstones and shales were deposited between the Greater and Lesser Caucasus, and detrital zircon age data suggest no mixing of Greater Caucasus and Lesser Caucasus detritus. During Middle to Late Miocene time, Greater Caucasus detritus was deposited onto the Lesser Caucasus basin margin, and terrestrial, largely conglomeratic, sedimentation began between the Greater and Lesser Caucasus. Around 5.3 Ma, upper plate exhumation rates increased and shortening migrated to pro‐ and retro‐wedge fold‐thrust belts, coinciding with the initiation of foreland basin erosion. Sediment composition, provenance and structural data from the orogen together suggest the existence of a wide (230–280 km) marine basin that was progressively closed during Oligocene to Late Miocene time, probably by subduction/lithospheric underthrusting beneath the Greater Caucasus, followed by initiation of collision between the Lesser Caucasus arc terrane and the Greater Caucasus in Late Miocene to Pliocene time. The pace of the transition from hypothesized subduction to collision in the Caucasus is consistent with predictions from numerical modeling for a system with moderate convergence rates (<13 mm/yr) and hot lower plate continental lithosphere. Basement crystallization histories implied by our detrital zircon age data suggest the presence of two pre‐Jurassic sutures between stable Eurasia and the Lesser Caucasus, which likely guided later deformation.The Greater Caucasus may constitute a natural example of early continental collision. New detrital zircon U‐Pb geochronology data, together with published Cenozoic stratigraphy and structural data from the Greater Caucasus, suggests collision began in the Late Miocene to Pliocene, leading to diachronous changes in deformation and sedimentation in the orogen and associated basins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/1/bre12499.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/2/bre12499-sup-0002-FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/3/bre12499-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/4/bre12499-sup-0003-FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/5/bre12499_am.pd

    Structure, morphology and seismicity of the frontal part of a propagating fold-and thrust belt: The Holocene 123-km-long Kur Fault, Greater Caucasus, Azerbaijan 

    Full text link
    editorial reviewedWe present the main features of the frontal structure, known as Kur Fault, of the Plio-Quaternary Kura fold-and-thrust belt in the Greater Caucasus (Azerbaijan). The Kur Fault has been analysed thanks to geological-structural and geomorphological surveys of its whole length, integrated by a relocation of instrumental seismicity, data on historical seismicity, new focal mechanism solutions, and ambient vibration measurements across the fault trace. The in-depth study of the frontal structure can: i) provide insights into the shallow propagation of a regional reverse fault, ii) contribute to a better understanding of the earlier stage of development of a young continent-continent collision, and iii) have implications for seismic hazard assessment because the area is seismically active and hosts the most important infrastructure for energy production in the country. The results show that the fault deforms the surface for a total length of 123 km. The shallow expression is given by four main scarp segments, with a right-stepping arrangement, which have different structural significance; they are represented by an alternation of fault-propagation folds, folds with offset frontal limbs, and shallow faulting. Analyses of the age of deformed deposits and landforms suggest activity from Mid-Late Miocene times to the Holocene. The fault attitude and its reverse kinematics are coherent with the Holocene and present-day state of stress, characterised by a N-S to NNE-SSW horizontal s1, suggesting the capability for seismic reactivation. Earthquake focal mechanism solutions indicate from pure reverse motions to transpressional kinematics in the area. Calculation of potential Mw indicates values in the range 7.5-7.9 if we consider its entire fault length, 6.1-7.2 if we consider the single segments.&#160;&#160;&#160;&#160;&#160

    Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments

    No full text
    The Greater Caucasus orogen on the southern margin of Eurasia is hypothesized to be a young collisional system and may present an opportunity to probe the structural, sedimentary and geodynamic effects of continental collision. We present detrital zircon U‐Pb age data from the Caucasus region that constrain changes in sediment routing and source exposure during the late Cenozoic convergence and collision between the Greater Caucasus orogen and the Lesser Caucasus, an arc terrane on the lower plate of the system. During Oligocene to Middle Miocene time, following the initiation of deformation within the Greater Caucasus, marine sandstones and shales were deposited between the Greater and Lesser Caucasus, and detrital zircon age data suggest no mixing of Greater Caucasus and Lesser Caucasus detritus. During Middle to Late Miocene time, Greater Caucasus detritus was deposited onto the Lesser Caucasus basin margin, and terrestrial, largely conglomeratic, sedimentation began between the Greater and Lesser Caucasus. Around 5.3 Ma, upper plate exhumation rates increased and shortening migrated to pro‐ and retro‐wedge fold‐thrust belts, coinciding with the initiation of foreland basin erosion. Sediment composition, provenance and structural data from the orogen together suggest the existence of a wide (230–280 km) marine basin that was progressively closed during Oligocene to Late Miocene time, probably by subduction/lithospheric underthrusting beneath the Greater Caucasus, followed by initiation of collision between the Lesser Caucasus arc terrane and the Greater Caucasus in Late Miocene to Pliocene time. The pace of the transition from hypothesized subduction to collision in the Caucasus is consistent with predictions from numerical modeling for a system with moderate convergence rates (<13 mm/yr) and hot lower plate continental lithosphere. Basement crystallization histories implied by our detrital zircon age data suggest the presence of two pre‐Jurassic sutures between stable Eurasia and the Lesser Caucasus, which likely guided later deformation.The Greater Caucasus may constitute a natural example of early continental collision. New detrital zircon U‐Pb geochronology data, together with published Cenozoic stratigraphy and structural data from the Greater Caucasus, suggests collision began in the Late Miocene to Pliocene, leading to diachronous changes in deformation and sedimentation in the orogen and associated basins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/1/bre12499.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/2/bre12499-sup-0002-FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/3/bre12499-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/4/bre12499-sup-0003-FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167026/5/bre12499_am.pd
    corecore