2,427 research outputs found

    Mock LISA data challenge for the galactic white dwarf binaries

    Get PDF
    We present data analysis methods used in detection and the estimation of parameters of gravitational wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational wave signals from more than 50 mln. Galactic binaries were added to the simulated Gaussian instrumental noise. Majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries

    Searching for Galactic White Dwarf Binaries in Mock LISA Data using an F-Statistic Template Bank

    Full text link
    We describe an F-statistic search for continuous gravitational waves from galactic white-dwarf binaries in simulated LISA Data. Our search method employs a hierarchical template-grid based exploration of the parameter space. In the first stage, candidate sources are identified in searches using different simulated laser signal combinations (known as TDI variables). Since each source generates a primary maximum near its true "Doppler parameters" (intrinsic frequency and sky position) as well as numerous secondary maxima of the F-statistic in Doppler parameter space, a search for multiple sources needs to distinguish between true signals and secondary maxima associated with other, "louder" signals. Our method does this by applying a coincidence test to reject candidates which are not found at nearby parameter space positions in searches using each of the three TDI variables. For signals surviving the coincidence test, we perform a fully coherent search over a refined parameter grid to provide an accurate parameter estimation for the final candidates. Suitably tuned, the pipeline is able to extract 1989 true signals with only 5 false alarms. The use of the rigid adiabatic approximation allows recovery of signal parameters with errors comparable to statistical expectations, although there is still some systematic excess with respect to statistical errors expected from Gaussian noise. An experimental iterative pipeline with seven rounds of signal subtraction and re-analysis of the residuals allows us to increase the number of signals recovered to a total of 3419 with 29 false alarms.Comment: 29 pages, 11 figures; submitted to Classical and Quantum Gravit

    The search for black hole binaries using a genetic algorithm

    Full text link
    In this work we use genetic algorithm to search for the gravitational wave signal from the inspiralling massive Black Hole binaries in the simulated LISA data. We consider a single signal in the Gaussian instrumental noise. This is a first step in preparation for analysis of the third round of the mock LISA data challenge. We have extended a genetic algorithm utilizing the properties of the signal and the detector response function. The performance of this method is comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico

    New bounds on the signed total domination number of graphs

    Full text link
    In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turan, we present a sharp lower bound on this parameter for graphs with no complete graph of order r+1 as a subgraph. Also, we prove that n-2(s-s') is an upper bound on the signed total domination number of any tree of order n with s support vertices and s' support vertives of degree two. Moreover, we characterize all trees attainig this bound.Comment: This paper contains 11 pages and one figur

    A hierarchical search for gravitational waves from supermassive black hole binary mergers

    Full text link
    We present a method to search for gravitational waves from coalescing supermassive binary black holes in LISA data. The search utilizes the F\mathcal{F}-statistic to maximize over, and determine the values of, the extrinsic parameters of the binary system. The intrinsic parameters are searched over hierarchically using stochastically generated multi-dimensional template banks to recover the masses and sky locations of the binary. We present the results of this method applied to the mock LISA data Challenge 1B data set.Comment: 11 pages, 2 figures, for GWDAW-12 proceedings edition of CQ

    Building a stochastic template bank for detecting massive black hole binaries

    Full text link
    Coalescence of two massive black holes is the strongest and most promising source for LISA. In fact, gravitational signal from the end of inspiral and merger will be detectable throughout the Universe. In this article we describe the first step in the two-step hierarchical search for gravitational wave signal from the inspiraling massive BH binaries. It is based on the routinely used in the ground base gravitational wave astronomy method of filtering the data through the bank of templates. However we use a novel Monte-Carlo based (stochastic) method to lay a grid in the parameter space, and we use the likelihood maximized analytically over some parameters, known as F-statistic, as a detection statistic. We build a coarse template bank to detect gravitational wave signals and to make preliminary parameter estimation. The best candidates will be followed up using Metropolis-Hasting stochastic search to refine the parameter estimation. We demonstrate the performance of the method by applying it to the Mock LISA data challenge 1B (training data set).Comment: revtex4, 8 figure

    Detecting white dwarf binaries in Mock LISA Data Challenge 3

    Get PDF
    We present a strategy for detecting gravitational wave signals from the Galactic white dwarf binaries in the Mock LISA Data Challenge 3 (MLDC3) and estimate their parameters. Our method is based on the matched filtering in the form of the {\mathcal F} -statistic. We perform the search on three-dimensional space (sky coordinate and frequency of gravitational wave) below 3 mHz and include the fourth parameter (frequency derivative) at high frequencies. A template bank is used to search for the strongest signal in the data, then we remove it and repeat the search until we do not have signals in the data above a preselected threshold. For the template bank, we construct an optimal grid that realizes the best lattice covering with a constraint such that the nodes of the grid coincide with the Fourier frequencies. This enables the use of the fast Fourier transform algorithm to calculate the {\mathcal F} -statistic

    Detectability and parameter estimation of GWTC-3 events with LISA

    Get PDF
    Multiband observations of coalescing stellar-mass black holes binaries could deliver valuable information on the formation of those sources and potential deviations from General Relativity. Some of these binaries might be first detected by the space-based detector LISA and, then, several years later, observed with ground-based detectors. Due to large uncertainties in astrophysical models, it is hard to predict the population of such binaries that LISA could observe. In this work, we assess the ability of LISA to detect the events of the third catalogue of gravitational wave sources released by the LIGO/Virgo/KAGRA collaboration. We consider the possibility of directly detecting the source with LISA and performing archival searches in the LISA data stream, after the event has been observed with ground-based detectors. We also assess how much could LISA improve the determination of source parameters. We find that it is not guaranteed that any event other than GW150914 would have been detected. Nevertheless, if any event is detected by LISA, even with a very low signal-to-noise ratio, the measurement of source parameters would improve by combining observations of LISA and ground based detectors, in particular for the chirp mass

    Fundamental physics and cosmology with LISA

    No full text
    In this article we give a brief review of the fundamental physics that can be done with the future space-based gravitational wave detector LISA. This includes detection of gravitational wave bursts coming from cosmic strings, measuring a stochastic gravitational wave background, mapping spacetime around massive compact objects in galactic nuclei with extreme-mass-ratio inspirals and testing the predictions of General Relativity for the strong dynamical fields of inspiralling binaries. We give particular attention to new results which show the capability of LISA to constrain cosmological parameters using observations of coalescing massive Black Hole binaries

    LISA Sensitivity and SNR Calculations

    Get PDF
    This Technical Note (LISA reference LISA-LCST-SGS-TN-001) describes the computation of the noise power spectral density, the sensitivity curve and the signal-to-noise ratio for LISA (Laser Interferometer Antenna). It is an applicable document for ESA (European Space Agency) and the reference for the LISA Science Requirement Document
    corecore