23 research outputs found

    Far-from-equilibrium field theory of many-body quantum spin systems: Prethermalization and relaxation of spin spiral states in three dimensions

    Get PDF
    We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on mean-field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle irreducible (2PI) effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures, and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the non-equilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild, et al. Phys. Rev. Lett. 113, 147205 (2014)]

    Multiple-scale structures: from Faraday waves to soft-matter quasicrystals

    Get PDF
    For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonic or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrated fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.Comment: 22 pages, 22 figures, 1 table. Comments welcom

    The theory of parametrically amplified electron-phonon superconductivity

    Get PDF
    The ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [Mitrano et al., Nature 530, 2016], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photo-emission spectroscopy experiments as a consequence of the proposed mechanism.Comment: 42 pages, 17 figure

    Dynamical instabilities and transient short-range order in the fermionic Hubbard model

    Get PDF
    We study the dynamics of magnetic correlations in the half-filled fermionic Hubbard model following a fast ramp of the repulsive interaction. We use Schwinger-Keldysh self-consistent second-order perturbation theory to investigate the evolution of single-particle Green's functions and solve the non-equilibrium Bethe-Salpeter equation to study the dynamics of magnetic correlations. This approach gives us new insights into the interplay between single-particle relaxation dynamics and the growth of antiferromagnetic correlations. Depending on the ramping time and the final value of the interaction, we find different dynamical behavior which we illustrate using a dynamical phase diagram. Of particular interest is the emergence of a transient short-range ordered regime characterized by the strong initial growth of antiferromagnetic correlations followed by a decay of correlations upon thermalization. The discussed phenomena can be probed in experiments with ultracold atoms in optical lattices.Comment: 4 pages, 3 figure

    Universal behavior of repulsive two-dimensional fermions in the vicinity of the quantum freezing point

    Get PDF
    We show by a meta-analysis of the available Quantum Monte Carlo (QMC) results that two-dimensional fermions with repulsive interactions exhibit universal behavior in the strongly correlated regime, and that their freezing transition can be described using a quantum generalization of the classical Hansen-Verlet freezing criterion. We calculate the liquid-state energy and the freezing point of the 2D dipolar Fermi gas (2DDFG) using a variational method by taking ground-state wave functions of 2D electron gas (2DEG) as trial states. A comparison with the recent fixed-node diffusion Monte Carlo analysis of the 2DDFG shows that our simple variational technique captures more than 95% of the correlation energy, and predicts the freezing transition within the uncertainty bounds of QMC. Finally, we utilize the ground-state wave functions of 2DDFG as trial states and provide a variational account of the effects of finite 2D confinement width. Our results indicate significant beyond mean-field effects. We calculate the frequency of collective monopole oscillations of the quasi-2D dipolar gas as an experimental demonstration of correlation effects.Physic
    corecore