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We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the
three dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for
understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously
broken continuous symmetry. We present a field-theoretical formalism that systematically improves
on mean-field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is
achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-
particle irreducible (2PI) effective action. Our analysis reveals rich fluctuation-induced relaxation
dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance
of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward
the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized
states are characterized by different bosonic modes being thermally populated at different effective
temperatures, and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin
correlators found by solving the non-equilibrium Bethe-Salpeter equation provide further insight
into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence
of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent
realizations of spin spiral states [S. Hild, et al. Phys. Rev. Lett. 113, 147205 (2014)].

PACS numbers: 75.10.Jm, 05.40.-a 05.70.Ln,

I. INTRODUCTION

The equilibration of isolated quantum many-body sys-
tems is a fundamental and ubiquitous question in physics.
It plays a central role in understanding a broad range
of phenomena, including the dynamics of the early uni-
verse [1] , the evolution of neutron stars [2], pump-probe
experiments in condensed matter systems [3], and the op-
eration of semiconductor devices [4]. The simplest per-
spective on the problem is to recognize a dichotomy be-
tween ergodic and non-ergodic systems. The former ex-
hibit fast relaxation to local equilibrium states occurring
at microscopic timescales, followed by a slower relaxation
process to global thermal equilibrium described by classi-
cal hydrodynamics of a few conserved quantities [5–7]. In
contrast, non-ergodic systems possess an extensive set of
conservation laws that prevent their thermalization [8, 9].

Recent theoretical and experimental investigations of
strongly-correlated systems, however, suggest significant
refinements to this dichotomy. For instance, certain
systems can be trapped for long times in quasi-stationary
“prethermalized” states with properties strikingly differ-
ent from true thermal equilibrium [10]. Examples include
nearly-integrable one-dimensional systems [11–15], and
systems with vastly different microscopic energy scales
in which slow dynamics results from the slow modes
providing configurational disorder and thereby localizing
the fast modes [16–18]. Even subtler examples of slow
dynamics include the Griffiths phase of interacting
disordered systems [19, 20] and translationally invariant
systems in higher dimensions with emergent slow degrees
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FIG. 1. Relaxation of spin spiral states in the 3D
isotropic Heisenberg model. (a) The system is pre-
pared in a spin spiral state in the xy plane with the winding
Q = (Q,Q,Q) as tuning parameter. The figure illustrates the
case Q = π/2. (b) The real-time evolution of the transverse
magnetization M⊥ for three different Q as indicated in the
plot. For Q = 7π/8, a hierarchical relaxation process emerges
with a non-thermal plateau at intermediate times. The time
scale is switched to logarithmic at tJ = 5 for better visibil-
ity. (c) A global view of the spiral dynamics. Non-thermal
plateaus appear near Q ∼ 0, π.
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of freedom [10, 21–29].

In this work, we discuss the emergence of slow dy-
namics and prethermalization in translationally invari-
ant spin systems that possess continuous symmetries. In
higher dimensions, these systems exhibit thermodynam-
ically stable symmetry broken phases with gapless Gold-
stone modes. For initial states tuned toward the symme-
try broken phases, the slow Goldstone modes give rise to
long-lived non-thermal states with a hierarchical relax-
ation dynamics that closely resembles aging in systems
with quenched disorder. A non-perturbative treatment
and beyond mean-field corrections are both found to be
crucial for describing the relaxation process.

Specifically, we study the dynamics of the three di-
mensional (3D) isotropic Heisenberg model initially pre-
pared in a spiral state, see Fig. 1 (a). The winding of the
spin spiral sets the energy density, which is a conserved
quantity in the unitary evolution. The spectrum of the
Heisenberg model from ferromagnetic (FM) and antifer-
romagnetic (AFM) states can be traversed by tuning the
spiral winding Q from 0 to π. In the vicinity of the FM
and AFM states, we find that the system exhibits a slow
hierarchical relaxation and can even come to a dynamical
arrest, see Fig. 1 (b–c). Surprisingly, the relaxation dy-
namics is neither compatible with the trivial relaxation
to local thermal equilibrium and slow hydrodynamic evo-
lution, since the spin current is not conserved, nor with
the linearized dynamics of the collective modes, which
predicts exponentially growing out-of-plane instabilities.

The relaxation of the Néel spin spiral state with
Q = π has been previously studied in the 1D Heisenberg
model [30–33]. In contrast to the 1D case, the 3D
Heisenberg model exhibits a symmetry broken thermal
phase, which is central for the phenomenon discussed
here. More recently, the dynamics of the Néel state in
the Fermi-Hubbard model on an infinite dimensional
Bethe lattice has been investigated [34], however, the
approach to the steady state could not be studied due
to the small effective exchange interaction.

From a technical perspective, our investigation of the
non-equilibrium dynamics of spiral states has been en-
abled by developing a non-perturbative field theoretic
formalism applicable to generic spin-1/2 systems for ar-
bitrary initial states and geometries, which we refer to
as the “Spin-2PI” formalism. This is achieved using
a Majorana fermion representation of spin-1/2 opera-
tors [35, 36], enlargement of the spin coordination num-
ber by a replica-symmetric extension, and ultimately a
systematic 1/N fluctuation expansion of the real-time
two-particle irreducible (2PI) effective action [37, 38].

The recent rapid progress in the phenomenol-
ogy of far-from-equilibrium quantum dynamics and
its broad applications has been enabled by similar
non-perturbative functional techniques. Examples
include extensive studies of the O(N) model in non-
equilibrium [39–41], thermalization, prethermalization

and non-thermal fixed points [10, 22, 42–44], particle
production, reheating and defect generation in inflation-
ary universe models [45–49], and dynamics of ultracold
fermionic and bosonic gases [50–52]. The present work
is the first to utilize this powerful technique to study the
far-from-equilibrium dynamics of interacting quantum
spin systems.

Understanding the emergence of slow dynamics near
thermodynamic phase transitions has implications
reaching far beyond the domain of condensed matter
physics. For instance, studies of non-equilibrium quan-
tum fields in the context of inflation and early universe
dynamics have suggested that the slowing down of
quantum evolution near phase transitions is a plausible
explanation for the large number of light particles and
broken symmetries in the observable universe [53].
Given that the experimental verification of theories
about early universe phenomena are typically rather
indirect, experiments with synthetic many-body systems
that allow precise monitoring of real-time dynamics
close to phase transitions could play an important
role in elucidating the emergence of slow evolution.
The dynamics of various interacting spin systems have
been already investigated in experiments with synthetic
quantum matter, including domain formation in spinor
condensates [54, 55], the precise measurement of the
evolution of spin flips in the ground state of 1D lattice
spin systems [56–59], quantum coherences in long range
models [60], and the relaxation dynamics of spin spiral
states in 1D and 2D Heisenberg models [32, 61]. The
experimental observation of the dynamical phenomena
discussed here are thus expected to be within close reach.

This paper is organized as follows: In Sec. II, we intro-
duce the Spin-2PI formalism, a technique we develop to
study the dynamics of interacting spin systems. Comple-
mentary technical details are presented in App. A. We
discuss the relaxation of spin spiral states in Sec. III.
The phenomenon of dynamical slowing down and arrest
will be presented Sec. III A, the long-time thermalization
in Sec. III B, and the dynamic formation of correlations
and instabilities in Sec. III C. We conclude our findings
in Sec. IV.

II. THE SPIN-2PI FORMALISM

Consider a generic Hamiltonian describing the pairwise
interaction between localized spin degrees of freedom on
a given lattice L:

Ĥ =
1

2

∑
j,k∈L

V αβjk Ŝαj Ŝ
β
k , (1)

where V is an arbitrary interaction, j and k denote lat-
tice sites, and {Ŝα} are spin-1/2 operators. Summation

over the repeated spin indices is assumed. Had Ŝ been
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ϕ̂ = ϕc +O(N− 1
2 )Ŝ D ∼ O(1/N)

FIG. 2. The Spin-2PI formalism illustrated. The spins
(green arrows) precess about a fluctuating exchange field (un-
certain blue arrows). The quantum fluctuations of the ex-
change field are mediated by a real vector bosons (wiggly
lines) and are suppressed by a factor of 1/N , permitting a
systematic expansion.

classical angular momentum variables, the Hamiltonian
dynamics of the system would be governed by the (non-
linear) Bloch equation:

dSj
dt

= ϕj × Sj , ϕαj =
∑
k∈L

V αβjk Sβk . (2)

In case of quantum spins, the Bloch equation only de-
scribes the evolution of the spin expectation values 〈Ŝ〉
to the extent of which the mean-field Ansatz 〈ŜjŜk〉 ≈
〈Ŝj〉 〈Ŝk〉 is valid. The latter, however, is only justified for
lattices with large coordination number, high spin parti-
cles, or in the presence of a high-temperature bath. The
crucial role of quantum fluctuations in the dynamics of
isolated spin-1/2 systems in finite dimensional lattices is
beyond the reach of semi-classical methods, and demands
a more careful treatment.

Here, we propose a formalism for transcending the
mean-field approximation for spin evolution by a system-
atic inclusion of quantum corrections. This is achieved
using functional methods and a variant of the large-N
expansion technique. As a first step, we construct an
auxiliary model in which each spin is replicated N times,
and each bond is promoted to N2 bonds between the
replicas, with equal weight but with an overall scale fac-
tor of 1/N . The Hamiltonian of the auxiliary model is
written as:

ĤN =
1

2

∑
j∈L

(∑
k∈L

V αβjk
1

N

N∑
σ′=1

Ŝβ;σ′

k

)
N∑
σ=1

Ŝα;σ
j . (3)

The initial state |Ψ0〉 is also subsequently promoted to an

uncorrelated product in the replica space,
⊗N

σ=1 |Ψ0〉σ.

The original problem is recovered by setting N = 1. We
refer to the sum appearing in the parentheses in Eq. (3) as
the exchange field operator, ϕ̂j , which plays the role of an
effective fluctuating magnetic field with which the spins
interact. The described large-N construction effectively
increases the coordination number of each spin, z, to Nz,
thereby suppressing the fluctuations of ϕ̂j according to

the law of large numbers, ϕ̂j = ϕc,j +O(1/
√
Nz), where

ϕc,j ≡ 〈ϕj〉 is the mean exchange field. In the limit of in-
finite N , the exchange field operator becomes effectively
classical such that mean-field dynamics of the original
model Ĥ emerges as the asymptotically exact description
of the dynamics in limN→∞ ĤN . For large but finite N ,
the fluctuations of ϕ̂ are small but not negligible, and can
be systematically incorporated into the dynamics order
by order in 1/N . This program can be carried out within
the functional method of two-particle irreducible (2PI)
effective actions. Crucially, truncating the expansion at
a finite order in 1/N and taking the limit N → 1 yields
non-perturbative and conserving approximations for the
spin dynamics. We refer to this method as the Spin-2PI
formalism, which is illustrated schematically in Fig. 2. In
brief, spins precess about a self-consistently determined
exchange mean field, and quantum spin fluctuations are
mediated by the local and non-local exchange of a real
vector boson whose propagator is suppressed by a factor
of 1/N .

In the remainder of this section, we briefly outline the
field theoretical developments that underlie the Spin-2PI
formalism. Complementary technical details are given
in App. A. A path integral for the spin-1/2 operators
is constructed using a representation invoking Majorana
fermions [35, 36]:

Ŝj = − i
2
ηj × ηj . (4)

The Majorana operators at each site {η1
j , η

2
j , η

3
j } satisfy

the Clifford algebra {ηµj , ηνk} = δjk δ
µν , from which the

SU(2) algebra for spins [Ŝαj , Ŝ
β
k ] = iδjk εαβγ Ŝ

γ
j and the

Casimir condition S2
j = 3/4 follow. The latter ensures

a faithful spin-1/2 representation, thereby precluding
unphysical states and obviating constraint gauge fields,
in contrast to the usual representation using Schwinger
charged slave particles [62].

Replacing the spin operators in Ĥ using Eq. (4), the
Hamiltonian is mapped to that of a many-body system of
Majorana fermions with quartic interactions. The large-
N program can be identically followed by replicating the
slave Majorana particles and assigning a replica index
to each. We proceed by constructing a path integral for
the Majorana fermions using fermionic coherent states on
the closed time path (CTP) Schwinger-Keldysh contour.
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The Lagrangian is given as:

L[η] =
1

2

∑
j∈L

N∑
σ=1

ηα;σ
j i∂t η

α;σ
j +

1

8N

∑
j,k∈L

N∑
σ1,σ2=1

V αβjk (ηj × ηj)α;σ1 (ηk × ηk)β;σ2 . (5)

The exchange field is introduced by a Hubbard-
Stratonovich decoupling of the quartic term using a real
vector boson ϕj on each lattice site. The non-equilibrium
exchange mean field ϕc, exchange field fluctuation prop-
agator D, and the Majorana propagator G are introduced
as:

ϕc(1) = 〈ϕ̂(1)〉,
iD(1, 2) = 〈TC [ϕ̂(1) ϕ̂(2)]〉 −ϕc(1)ϕc(2),

iG(1, 2) = 〈TC [η(1) η(2)]〉. (6)

The integer variables are shorthand for the bundle of lat-
tice site, contour time, spin and replica index. According
to Eq. (4), the local spin expectation value is proportional
to the fermion tadpole:

〈Ŝαj (t)〉 =
1

2
εαβγ Gβγjj (t+, t). (7)

We obtain the real-time evolution equations for G, D and
ϕc using the 2PI effective action formalism [37]. The
effective action Γ[G,D,ϕc] is found by sourcing G, D and
ϕc and performing Legendre transformations:

Γ[G,D,ϕc] =
1

2
tr lnG−1 +

1

2
tr[G−1

0 G]− 1

2
tr lnD−1

− 1

2
tr[D−1

0 D] + Γint[G,D,ϕc], (8a)

Γint[G,D,ϕc] = −1

2
tr[M [ϕc]G] +

i

2
ϕcD−1

0 ϕc + Γ2[G,D],

(8b)

The bare Majorana and exchange propagators are
given as G−1

0 (1, 2) = i∂t1δ(1, 2) and D−1
0 (1, 2) =

N (V −1) δ(t1, t2), respectively. M [ϕc] is the leading or-
der (LO) self-energy (see Eq. A9). The evolution equa-
tions follow from making Γ stationary with respect to G,
D, and ϕc, see Eqs. (A7a)-(A7c).

Save for Γ2[G,D], the rest of the terms appearing
in Γ[ϕc,G,D] scale as O(N) and together comprise the
leading-order (LO) approximation. The next-to-leading-
order (NLO) corrections and beyond are represented by
Γ2[G,D] which formally corresponds to the sum of 2PI
vacuum diagrams arising from the cubic interaction ver-
tex:

Lint[η,ϕ] =
i

2
ϕ · (η × η)σ =

i

2
εαβγ

ϕα ηβ;σ

ηγ;σ
. (9)

The 1/N expansion of Γint to the next-to-next-to-leading

(NNLO) order is diagrammatically given as:

Γint[G,D] = ︸ ︷︷ ︸
LO ∼ O(N)

+ ︸ ︷︷ ︸
NLO ∼ O(1)

+ +︸ ︷︷ ︸
NNLO ∼ O(1/N)

.

(10)
We have used the stationarity condition, Eq. (A7c), to
omit ϕc in favor of G in the LO interaction terms. The
Feynman diagram rules are given in Sec. A 2.

Truncating the 1/N expansion of Γ at a finite order
and setting N = 1 yields systematic improvements of
the mean-field spin dynamics. The ensuing approximate
theories are self-consistent and non-perturbative by con-
struction, and respect the conservation laws associated
to the global symmetries of the microscopic action, such
as magnetization and energy. The latter is crucial for the
long-time stability of the non-equilibrium dynamics.

We remark that in systems with large spin coordina-
tion number z, fluctuations of the exchange field are in-
herently suppressed and the expansion parameter is more
accurately identified with 1/(zN). Therefore, the large-
N expansion of the Spin-2PI effective action in models
with z >∼ 1 is expected to be controlled and rapidly con-
verging, even after taking the limit N → 1. Studies of
the O(N) model show that the most important correc-
tion to the mean-field (LO) approximation is captured
by the NLO “fluctuation-exchange” diagram, along with
negligible quantitative corrections from the subleading
terms [63, 64].

The Bloch equation is recovered upon truncating Γ at
the LO level, see Sec. A 3. Truncations at NLO and be-
yond give rise to memory effects due to the dynamical
fluctuations of the exchange field and result in a two-
time Kadanoff-Baym integro-differential equation instead
of the mean field Bloch equation, see Eqs. (A13a)-(A14b).
Finally, higher order correlators, in particular the spin-
spin correlator iχ(1, 2) ≡ 〈TC [Ŝ(1)Ŝ(2)]〉 − 〈Ŝ(1)〉 〈Ŝ(2)〉,
can be reconstructed with the knowledge of G and D by
solving the non-equilibrium Bethe-Salpeter integral equa-
tion on the Schwinger-Keldysh contour, see App. A 3.

III. RELAXATION OF SPIN SPIRAL STATES
IN THE 3D HEISENBERG MODEL

In this section, we investigate the unitary evolution of
the spin spiral state on a 3D cubic lattice,

|sp(Q)〉 = e−i
∑

j Q·Rj Ŝ
z
j

⊗
j∈Z3

|→〉j , (11)

under the isotropic Heisenberg Hamiltonian Ĥ =
−J∑〈ij〉 Ŝi · Ŝj using the Spin-2PI formalism devel-

oped in the previous section. Here, |→〉j denotes the
x-polarized state on lattice site j. The spiral is prepared
in the xy-plane with a winding wavevector Q. We as-
sume ferromagnetic couplings J > 0 for concreteness,
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even though the sign of the J does not affect the uni-
tary evolution due to the time reversal symmetry of the
Heisenberg model.

The spiral state |sp(Q)〉 is a simultaneous eigenstate

of Ŝa(Q) ≡ T̂a R̂z(Qa), a = x, y, z, where T̂a and R̂z(Qa)
denote the translation by one lattice site along the a-axis
and rotation by angle Qa about the z-axis, respectively.
The translation and rotation symmetries of the isotropic
Heisenberg model imply [Ĥ, Ŝa] = 0, so that the spi-
ral state |sp(Q)〉 remains a simultaneous eigenstate of

Ŝa(Q) at all times in the course of unitary evolution. As

a result, the out-of-plane magnetization 〈Ŝzj (t)〉 vanishes
identically, and the spiral magnetic order with the initial
winding Q persists at all times. The transverse magne-
tization,

M⊥(Q, t) ≡ 1

L3

∑
j∈L

e−iQ·Rj
[
〈Ŝxj (t)〉+ i〈Ŝyj (t)〉

]
, (12)

is the only degree of freedom at the level of single spin
observables. Also, M⊥(k, t) = 0 for k 6= Q. We remark
that even though the magnetization dynamics is signifi-
cantly constrained at the level of single spin observables
by symmetries, arbitrary spin correlations are allowed to
form in the course of evolution, including both in- and
out-of-plane spin correlations at arbitrary wavevectors.

A simplifying aspect of the present problem is that
the apparently broken translation symmetry of the spi-
ral state can be restored using an “unwinding” unitary

transformation ÛQ ≡ ei
∑

j Q·Rj Ŝ
z
j under which the spi-

ral state transforms into a uniform x-polarized prod-
uct state |Ψ̃0〉 = ÛQ |sp(Q)〉 =

⊗
j |→〉j . The unwind-

ing transformation, however, transforms the Hamiltonian

Ĥ → H̃ = ÛQĤÛ
†
Q to an anisotropic Heisenberg model

with a Dzyaloshinskii-Moriya term:

H̃ = −J
∑
〈j,k〉

[
Ŝzj Ŝ

z
k +cosQ · (Rj−Rk)

(
Ŝxj Ŝ

x
k + Ŝyj Ŝ

y
k

)
− sinQ · (Rj −Rk)

(
Ŝxj Ŝ

y
k − Ŝ

y
j Ŝ

x
k

)]
. (13)

The translation invariance of the initial state in the
spiral frame significantly simplifies the structure of the
Spin-2PI equations: G and Σ become local in the real
space while D depends only on the distance between the
sites. These simplifications hold for arbitrary truncations
of Γint. Additionally, the bosonic self-energy Π becomes
local in the real space at the NLO truncation. The mag-
netization is non-vanishing only along the x-direction
in the spiral frame due to the symmetry considerations
mentioned earlier. The quantities calculated in the
spiral frame can be readily transformed to the lab frame
using appropriate rotations. In particular, Eq. (7) gives
M⊥(Q, t) = (1/2)G23,>(t, t) with G calculated in the
spiral frame. We choose the winding to be along the
diagonal direction Q = (Q,Q,Q) hereafter and refer to
the spiral winding with the single scalar Q ∈ [0, π].

At the LO level, the spin dynamics is governed by the
Bloch equation, Eq. (2). The exchange mean field ϕc
is parallel to the local magnetization at all lattice sites
in a spiral state, implying the absence of any dynamics.
In other words, the spiral states are fixed points of the
mean-field dynamics for all windings Q.

Going beyond the LO dynamics and including the
exchange field fluctuations by taking into account the
NLO corrections, the spiral state exhibits an intrigu-
ing fluctuation-induced relaxation dynamics. States with
different windings have different energy densities, along
with different strength of in-plane and out-of-plane spin
fluctuations, and are found to relax in strikingly differ-
ent ways. As we discuss below, these factors conspire to
give rise to a non-trivial hierarchical relaxation scenario
for spiral states lying close to thermodynamically stable
orders, exhibiting prethermalization [10], and dynamical
arrest resembling glassy systems [65].

A. Relaxation and dynamical arrest of the
transverse magnetization

The spiral state for Q = 0 is a fully polarized FM
eigenstate of the Heisenberg model and is therefore
stationary. The Q = π spiral, on the other hand,
corresponds to an uncorrelated Néel state which in three
dimensions has a large overlap with the correlated AFM
state lying at the upper end of the spectrum of the FM
Heisenberg model. As a result, the system is expected
to achieve a steady state marked with a finite staggered
magnetization after a short course of dephasing dynam-
ics, provided that the generated effective temperature
is below the ordering temperature. The evolution of
M⊥ is shown in Fig. 1 (b) for several choices of Q, along
with a global surface plot for Q ∈ [0, π] and tJ ∈ [0, 30]
in Fig. 1 (c). The stationarity of the FM state (Q = 0)
and the rapid settlement of Néel state (Q = π) to
a steady state with finite staggered magnetization is
observed.

Short-time dephasing dynamics— For all Q, the first
stage of dynamics is a short-time relaxation of the form
M⊥ ≈ 1/2 − νQt

2 arising from the dephasing between
the eigenstates that overlap with the spiral. A straight-
forward calculation using the short-time expansion

〈Ŝ(t)〉 = 〈Ŝ〉0 + it 〈[Ĥ, Ŝ]〉0 + (it)2

2

〈[
Ĥ, [Ĥ, Ŝ]

]〉
0

+ . . .

gives νQ = 3
8 J

2 (cosQ− 1)2. The values of νQ extracted
from the numerically obtained M⊥ are in agreement
with the exact result, see Fig. 6. The second stage of
relaxation dynamics depends on the winding of spiral
and is either directly thermalizing, or exhibits long-lived
prethermalized states preceding the true thermalization.
We discuss these cases separately.

Spiral states with Q ∼ π/2— Spin spiral states with
Q ∼ π/2 have a high energy density with respect to
both the FM and the AFM state. Thus, Q ∼ π/2 spiral
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states overlap with a large number of eigenstates of the
Heisenberg model. Such a broad superposition of states
lead to fast dephasing which is found to be within a
few exchange times. Our results indicate a rapid onset
of exponential decay M⊥ ∼ e−γQt with the fastest rate
occurring at Q = 0.55(1)π ∼ π/2.

Spiral states with Q ∼ 0 and Q ∼ π— A complex multi-
scale relaxation scenario emerges for spirals with wind-
ings tuned to Q ∼ 0 and Q ∼ π, lying close to FM and
AFM magnetic orders, respectively. The transverse mag-
netization exhibits an intermediate plateau for these ini-
tial states which appears continuously upon tuning Q, see
Fig. 1. The plot of M⊥ shown in Fig. 1 (b) for Q = 7π/8
displays the intermediate plateau followed by relaxation
at later times. As Q is tuned closer toward 0 or π, the
lifetime of the plateau increases abruptly and the mag-
netization comes to a dynamical arrest. We investigate
the nature of such long-lived plateaus in more detail in
the following sections.

B. Prethermalization vs. Thermalization

Due to the non-integrability of the 3D Heisenberg
model, the energy distribution of spin fluctuations is ex-
pected to approach a thermal population in the long time
limit, according to the eigenstate thermalization hypoth-
esis (ETH) [66–68]. We investigate the nature of steady
states emerging in the dynamics by calculating the spin-
spin correlation and response functions, corresponding
to the Keldysh (K) and retarded (R) components of the
CTP spin-spin correlator χµν(t, t′), by solving the non-
equilibrium Bethe-Salpeter equation (see App. A 3). At
thermal equilibrium, these quantities are related via the
bosonic fluctuation-dissipation relation (FDR):

iχK(ω) = −2 coth(ω/2kBT ) Im[χR(ω)] , (14)

where T is the effective temperature. Here, ω refers to the
Fourier frequency in the time difference t−t′ in the steady
state achieved at long times. Likewise, one can define an
effective temperature for the exchange field fluctuations
using the bosonic FDR between DK and DR. We refer
to the temperatures obtained from χ and D as Tspin and
Tfluct., respectively.

The effective temperatures obtained from the FDR in
the steady state are shown in Fig. 3 (a). For all spiral
windings Q, we find that FDR is satisfied to an excellent
degree for each bosonic mode once the steady state is
reached, see Fig. 3 (b). As we discuss below, however, the
effective temperature obtained from different modes may
disagree with each other. This allows us to distinguish
prethermalization from true thermalization.

Thermalization of spiral states with Q ∼ π/2— For a
range of spiral wavevectors π/4 <∼ Q <∼ 3π/4, the steady
state temperatures obtained from all bosonic modes, i.e.
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FIG. 3. Thermalization of the spin spiral state. (a) The
effective inverse temperature of spin fluctuations Tspin and ex-
change field fluctuations Tfluct. obtained from the fluctuation-
dissipation relations in steady state. The two temperatures
are in agreement for spiral windings near Q ∼ π/2, support-
ing the true thermalization of the system. The temperatures
calculated in the prethermalized plateausQ ∼ 0, π (shaded re-
gions) disagree with each other, and generically differ from the
temperature of the true thermal states that emerge at later
times. Inset: the temperature kBT as a function of Q (same
data as in the main panel) displays a resonance from positive
infinite temperature to negative infinite temperature at the
classical duality point Q = π/2. (b) The approach of Tfluct.

to steady state (light to dark) as obtained from fluctuation-
dissipation relations for Q = π/4 (left) and Q = π (right).
The steady state temperatures are shown on the plots.

local and non-local in- and out-of-plane spin and ex-
change field fluctuations, agree with each other, suggest-
ing the complete thermalization of the system and in ac-
cordance with the ETH.

Spirals with Q = π/2 flow to an infinite temperature
thermal state, which is understood from the duality
Q→ π −Q, J → −J present in the classical Heisenberg
model. This classical duality extends to the quantum
Heisenberg model in the high temperature regime. The
duality point Q = π/2 further marks the resonance
from positive temperatures for Q < π/2 to negative
temperatures for Q > π/2, see the inset of Fig. 3 (a). The
T < 0 thermal states of the FM Heisenberg model with
coupling −|J | corresponds to T > 0 states of the AFM
Heisenberg model with coupling +|J |, and vice versa.
Negative temperature states naturally arise in isolated
systems with bounded energy spectra as legitimate
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FIG. 4. The evolution of spin correlations. Top panels: Growth rate of out-of-plane instable modes obtained from a linear
response analysis. Bottom panels: Numerically calculated correlation function 〈Ŝz

kŜ
z
−k 〉(t) = iχzz,K

k (t, t) as a function of the
lattice wavevector k = (k, k, k) within the Spin-2PI formalism including NLO corrections. (a) Q = 3π/8, (b) Q = π/2, and (c)

Q = 3π/4. The inset in (c) shows the connected part of the in-plane correlations 〈Ŝ+
k Ŝ
−
−k〉(t).

thermal states and occur when the initial energy density
lies closer to the upper edge of the energy spectrum.

Prethermalization of spiral states with Q ∼ 0, π— For
spiral states with Q ∼ 0, π, where the system develops a
prethermal plateau, the effective spin and exchange field
fluctuation temperatures disagree, even though the FDR
is satisfied well for each mode individually. This find-
ing supports the prethermalized nature of such steady
states. It is understood that the temperatures calcu-
lated within the prethermal plateau [shown as shaded
regions in Fig. 3 (b)] correspond to the effective temper-
ature of individual modes, and not the true thermody-
namical temperature. We expect the two temperatures
to approach each other at longer times once the system
exits the prethermalized plateau and progresses toward
a fully thermalized state.

The spiral state with Q = 0 is an exact ground state of
the system and FDR yields T = 0 as expected. In con-
trast, the Q = π state approaches a finite temperature,
which is understood by the fact that the uncorrelated
Néel state must be “dressed” with spin correlations
before the steady state is reached, see inset of Fig. 3 (a).
The 3D Heisenberg model exhibits a finite tempera-
ture equilibrium phase transition from the disordered
paramagnetic phase to the ordered FM or AFM phase,
depending on the sign of the exchange coupling J . For
the spiral at Q = π, the FDR of the spin fluctuations are
not well fulfilled at accessible times while those for ex-
change field fluctuations are. The temperature extracted
from the latter |Tfluct.(Q = π)| = 0.82J lies below the
the AFM ordering temperature TAFM

c = 0.946(1)J . The
latter has been obtained from quantum Monte Carlo
simulations [69].

The near-thermal distribution of fluctuations in the
prethermalized plateaus and the proximity to the ther-
modynamically stable FM/AFM ordered phases allow us

to explain the dynamical arrest: the spiral winding Q sets
the energy density of the system and subsequently the ef-
fective temperature T (Q) in the steady state. T (Q) ap-
proximately dictates the magnitude of spin fluctuations
on the top of the spiral states, which we recall are mean-
field saddle points for all Q. Depending on Q, T (Q) can
either lie below or above the critical transition temper-
ature, TFM

c or TAFM
c , thereby providing an approximate

condition for the stability of the spiral order.

C. Instabilities and Correlations

The dynamical stabilization of spirals near the FM
and AFM orders, and consequently the appearance of
prethermal plateaus, was understood on the basis of
thermodynamical arguments in the previous section.
However, even though the spiral states are fixed points
of the mean-field dynamical equations, they are unstable
and have a tendency to form out-of-plane textures as the
energy of spiral states can be reduced by an appropriate
out-of-plane tilt. Therefore, in a thermodynamical
ensemble where arbitrary out-of-plane fluctuations are
allowed, these saddle points fail to give rise to symmetry
broken states, leaving Q = 0 and Q = π as the only
thermodynamically stable orders in the Heisenberg
model. Therefore, the present situation must be re-
garded from the perspective of quantum dynamics, i.e.
the unitary evolution of a pure state |sp(Q)〉 rather than
the statistical fluctuations in a mixed thermodynamical
ensemble. Here, the system remains in a pure state
at all times and the magnetic order is confined to the
xy spiral plane due to the symmetries discussed at
the beginning of Sec. III. It is therefore conceivable
that symmetry-protected dynamical constraints allow
thermodynamically unstable saddle points to become
long-lived states in the course of unitary dynamics.
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FIG. 5. Dynamics of exchange field fluctuations. (a) The out-of-plane (top) and in-plane (bottom) exchange field
fluctuations as a function of time and momentum k = (k, k, k) for Q = π/4 (left) and Q = 7π/8 (right). The red lines indicate
the most enhanced mode in the long time limit; the blue dashed line in the lower right plot corresponds to the k = Q in-plane
mode which initially exhibits the strongest enhancement of correlations. (b) The evolution of the late-time most enhanced
mode for Q = π/4, π/2 (left) and Q = 7π/8, π (right). In cases where the system thermalizes, left column, SU(2) symmetry
emerges in the long time limit, while it is broken in the prethermal case Q = 7π/8 and for Q = π, right column. In the latter
case, the system can exhibit true long-range order provided its effective temperature is below the critical temperature of the
equilibrium phase transition and thus be thermal and simultaneously break SU(2) symmetry.

The out-of-plane instability of the spiral state in the
Heisenberg model can be studied either by performing
a linear response analysis of the Bloch equations, or
similarly from the Holstein-Primakoff spin-wave analy-
sis. Either way, the dispersion of out-of-plane spin-
waves forming on the top of the spiral is found as ωk =√
ε2k −∆2

k [32, 70], where:

εk = −JS
3∑
d=1

[(1 + cosQ · êd) cosk · êd − 2 cosQ · êd] ,

∆k = −JS
3∑
d=1

[(1− cosQ · êd) cosk · êd] . (15)

Unstable modes arise when ωk assumes imaginary values.
Except for Q = 0, π/2, π, one always finds such unstable
modes: for Q < π/2, the fastest growing mode is k =
(k, k, k) with k = cos−1[cos2(Q/2)] along with a sharp
cutoff |k| ≤ Q; for Q > π/2, unstable modes occur for
|k − π| ≤ Q, with the fastest mode always being the
staggered k = π mode, independently of Q.

A simple estimate for the lifetime of the prethermal
plateaus is obtained by calculating the time it takes for
typical unstable out-of-plane collective mode to grow
to O(1). The rationale behind this estimate is that
the in-plane order can not coexist with strong enough
out-of-plane fluctuations. Expanding around Q = 0, π,
we obtain a scaling t ∼ 1/Q2 for the FM-like and
t ∼ 1/(π − Q) for the AFM-like spirals, up to logarith-
mic corrections. However, the lifetime of plateaus as
found from the Spin-2PI formalism exceeds the above
estimates; in particular, as Q is tuned closer toward
0 or π, we observe as rapid increase of the lifetime of

prethermal plateaus.

The top panels in Fig. 4 show Im[ωk] for several values
of Q, along with the evolution of equal-time out-of-plane

spin correlations iχzz,Kk (t, t) = 〈Ŝzk(t) Ŝz−k(t)〉 obtained
by solving the non-equilibrium Bethe-Salpeter equation
in the NLO approximation, bottom panels. Further, the

connected part of in-plane correlations iχ+−,K
k (t, t) =

〈Ŝ+
k (t) Ŝ−−k(t)〉 − 〈Ŝ+

k (t)〉〈Ŝ−−k(t)〉 is shown in the inset
of panel (c).

At t = 0, spin correlations are zero in accordance
with the initial spiral state |sp(Q)〉 being an uncorre-
lated product state. The out-of-plane correlations form
at times t ∼ J . The most enhanced correlations coin-
cide with the wavevector predicted by the linear response
analysis to a good degree. The sharp cutoffs predicted by
this analysis are found to be smeared, which is expected
due to the mode coupling embedded in our self-consistent
approach. The time scale for the formation of correla-
tions is found to be on the order of the dephasing time,
reflecting the fact that the short-time dephasing dynam-
ics and formation of correlations are manifestations of
the same phenomenon.

For spiral states that thermalize within the numeri-
cally achievable time scales, we observe a smooth shift in
both in-plane and out-of-plane spin correlations from the
initial Q-dependent enhanced modes to either k = 0 or
k = π, depending on whether Q < π/2 or Q > π/2,
respectively [see Fig. 4(a), (c), and the inset]. Even
though the linear response analysis correctly indicates
the wavevector of the fastest growing out-of-plane mode,
the spin correlations rapidly saturate to their maximum
values, as opposed to an unbounded exponential growth.
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A similar rapid dynamical regulation of the growth of un-
stable modes was previously reported in Ref. [22, 45] in
the context of parametric resonance in the O(N) model.
In the present problem, this phenomenon explains why
the lifetime of the plateaus exceeds the estimate obtained
from the linear response analysis, and indicates the im-
portant role of nonlinear effects and the necessity of non-
perturbative treatments.

For spiral states that exhibit long-lived prethermal
plateaus, we study the exchange field correlations D, a
quantity that is closely related to χ but can be calculated
for much longer times with less computational resources.

The evolution of Dzz,Kk (t, t) and D+−,K
k (t, t) for Q = π/4

and Q = 7π/8 are shown in Fig. 5 (a). The former corre-
sponds to a spiral state that thermalizes at about 20J−1,
while the latter exhibits a magnetization plateau up to
τM ∼ 20 J−1, as shown in Fig. 1. For t <∼ τM , the most
enhanced in-plane mode occurs at k = Q which upon
demagnetization smoothly switches to k = π for t >∼ τM .
The most unstable out-of-plane mode is always at k = π.

As a further check for thermalizing behavior, we study
the restoration of the SU(2) symmetry in the exchange

field fluctuations Dzz,Kk (t, t) → (1/2)D+−,K
k (t, t), see

Fig. 5 (b). For Q = π/4 and Q = π/2, we find that the
SU(2) symmetry is restored at longer times (left column),
while for Q = 7π/8 and the Néel initial state Q = π, the
SU(2) symmetry remains broken at all accessible times
(right column). Notably, the out-of-plane fluctuations for
Q = 7π/8 is found to be an order of magnitude stronger
than the Q = π, in agreement with the previously men-
tioned existence of an unstable out-of-plane mode for the
former state and its absence in the latter.

The magnitude of in-plane fluctuations remain es-
sentially constant in the plateau for Q = 7π/8 (top
right) while the out-of-plane fluctuations monotonically
increase and reach a maximum at t ∼ 20 J−1 ∼ τM , pre-
cisely when the prethermal magnetization decays. This
finding connects the decay of the the spiral to the growth
of out-of-plane fluctuations. The time τM also marks a
reversal in the trend of out-of-plane and in-plane corre-
lations. Even though this change indicates a first step
toward establishing SU(2)-symmetric correlations, the
condition is far from being satisfied at t ∼ τM and is
bound to occur on much longer time scales, indicating
a hierarchical relaxation scenario with the relaxation of
magnetization preceding the relaxation of correlations.

The appearance of long-lived prethermal states and
the hierarchical relaxation is reminiscent of aging dy-
namics in classical structural glass models with quenched
disorder [65] and kinematically constrained models [71].
Similar multi-scale glassy relaxation dynamics has been
recently reported in the quench dynamics of fermions in a
nearly-integrable 1D model using a different method [15].

According to the discussions presented so far, the in-
tricate relaxation dynamics of the spiral state is deeply
rooted in the quantum nature of spins. In order to fur-
ther study role of quantum correlations, we compare
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FIG. 6. Comparison between Spin-2PI and semi-
classical dynamics. The Spin-2PI results (solid black lines)
are compared to the semi-classical dynamics obtained from
the dTWA (dashed blue lines). The short time analytic result
from Sec. III A is also shown for reference (thick red lines).
The long time dynamics of the two methods are significantly
different. In particular, the dTWA is not capable of describing
the long-lived prethermal plateaus in contrast to the Spin-2PI
formalism. The scale of the time axis is switched from linear
to logarithmic at tJ = 5 for better visibility.

the predictions of the Spin-2PI formalism with the re-
sults obtained from the truncated Wigner approximation
(dTWA) [72, 73], a variant of the semi-classical TWA
method [74]. In Fig. 6 we show a comparison of the mag-
netization obtained from Spin-2PI (solid black lines) and
dTWA (dashed blue lines). The two methods generically
agree with the analytic short time expansion (red thick
lines), with the exception that dTWA does not reproduce
the correct short time dynamics for Q = π/4. The two
methods predict strikingly different long time dynamics.
Even though dTWA exhibits some degree of dynamical
slowing down for FM-like and AFM-like spirals, it pro-
duces neither the prethermal plateau for Q = 7π/8, nor
the finite steady-state magnetization for Q = π. We note
that the latter is supported by exact QMC calculations.

IV. CONCLUSIONS AND OUTLOOK

We formulated a non-perturbative and conserving
field theoretic technique for describing the far-from-
equilibrium quantum dynamics of strongly interacting
spin-1/2 systems for arbitrary lattices and initial states.
Referred to as the Spin-2PI formalism, this method sys-
tematically improves upon the mean-field description by
including quantum fluctuations by means of an asymp-
totic 1/N expansion, which is controlled in models with
intrinsically large lattice coordination number.

We utilized the Spin-2PI technique to study far-from-
equilibrium phenomena in spin systems with continuous
symmetries. Specifically, we explored the relaxation dy-
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namics of spin spiral states in the 3D Heisenberg model,
treating the spiral winding Q as a tuning parameter. Go-
ing beyond the trivial mean-field (LO) dynamics by in-
cluding the NLO correction, we found the spiral states
with different windings to relax in remarkably different
ways. In particular, spiral states resembling FM and
AFM ordered states, corresponding to Q ∼ 0 and π
respectively, get trapped for long times in non-thermal
states, i.e. “false vacuums” whose lifetime diverge as the
windings are tuned to Q = 0 or π. In contrast, the spiral
states far from Q = 0, π relax rapidly.

We calculated the effective temperature of spin and ex-
change field fluctuations from the fluctuation-dissipation
relation. For Q ∼ π/2 spiral states, all modes reach a
single temperature, supporting full thermalization in ac-
cordance with the eigenstate thermalization hypothesis.
In contrast, the different bosonic modes of prethermaliz-
ing spirals settle at different temperatures.

We investigated the dynamical formation of corre-
lations and found that the collective modes predicted
to be unstable from a linear response analysis, are
self-regularized at rather short time scales, demon-
strating the importance of the nonlinear effects and
non-perturbative treatments. The growth of out-of-plane
fluctuations cause the eventual decay of the prethermal
states. The restoration of SU(2) symmetry occurs much
later after the decay of magnetization, suggesting a
hierarchical relaxation reminiscent of coarsening and
aging in classical glassy systems. Our results can be
tested readily in ultracold atoms experiments with two-
component Mott insulators in 3D optical lattices, such
as a 3D extension of the experiments in Refs. [32, 61].

This work can be extended in several directions. A
straightforward extension is to investigate the relaxation
of spiral states in anisotropic models, or in lower dimen-
sions. Another immediately accessible direction is study-
ing spin systems with long-range interactions, as realized
for instance with Rydberg atoms, polar molecules, or
trapped ions, and their instability toward dynamic crys-
tallization. In addition, the evolution of disordered states
can be studied as well as the formation of topological de-
fects in quenches to the ordered phase, corresponding
to the instantaneous limit of the quantum Kibble-Zurek
mechanism [75, 76]. For the 3D Heisenberg model with
SU(2) symmetry, topologically stable hedgehogs [77] are
expected to form with universal scaling laws. Other ex-
tensions include coupling the system to a bath, taking
into account NNLO corrections to analyze the robustness
of the NLO results, and comparing with other systematic
expansions such as 1/D-expansion in D-dimensional lat-
tices and 1/S-expansion in large-S spin systems.
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Appendix A: Summary of the truncated Spin-2PI
formalism at the NLO level

In this Appendix, we provide supplementary mate-
rial for the Spin-2PI formalism along with a brief ac-
count of the numerical methods. The covered material
includes the explicit derivation of the approximate dy-
namical equations from the NLO truncated 2PI effective
action and the reconstruction of real-time spin-spin cor-
relators from the Bethe-Salpeter equation.

1. Correlation functions on the Schwinger-Keldysh
time contour

In the Schwinger-Keldysh formalism, the non-
equilibrium dynamics of quantum fields is most elegantly
derived from a path-integral defined on the round-trip
contour C = C+ ∪ C−:

t = t0 t = +∞

The Majorana operators η and real vector boson ϕ are
replaced by Grassmann and real vector valued variables
in the path-integral, along with an anti-periodic and pe-
riodic boundary condition at the contour endpoints, re-
spectively.

The correlation functions defined on the C contour can
be thought of 2×2 matrices in the two-dimensional space
of the contour branch index. For example, the Majorana
2-point correlator G can be explicitly written as:

G(t1, t2) =

(
G++(t1, t2) G+−(t1, t2)
G−+(t1, t2) G−−(t1, t2)

)
, (A1)

where the times appearing in the matrix are ordinary
times. We have dropped the discrete indices for brevity.
The off-diagonal matrix elements are identified with the
“lesser” and “greater” explicitly ordered correlators:

G+−(t1, t2) ≡ G<(t1, t2) = +i
〈
η(t2) η(t1)

〉
,

G−+(t1, t2) ≡ G>(t1, t2) = −i
〈
η(t1) η(t2)

〉
. (A2)
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The diagonal matrix elements are related to each other
by the virtue of the unitarity of evolution:

G++(t1, t2) = +θ(t1 − t2)
[
G>(t1, t2)− G<(t1, t2)

]
,

G−−(t1, t2) = −θ(t2 − t1)
[
G>(t1, t2)− G<(t1, t2)

]
,

(A3)

which are identified with the usual retarded and advanced
response functions, G++ ≡ GR and G−− ≡ GA. While the
lesser and greater correlation functions are independent
functions for Dirac (complex) fermions, they are related
to each other for Majorana fermions by transposition and
negation, as it can be seen from Eq. (A3):

G>(1, 2) = −G<(2, 1). (A4)

In summary, the 2-point correlator of Majorana fermions
on the contour is fully specified by a single real-time
correlator, e.g. G>(1, 2). It is easily shown that the
same decomposition and relations hold for the Majorana
self-energy Σ. The correlator of real bosons D and the
bosonic self-energy Π admit a similar decomposition, ex-
cept for the absence of the relative minus sign in the
definition of D> and D<:

D+−(t1, t2) ≡ D<(t1, t2) = −i
〈
ϕ(t2)ϕ(t1)

〉
,

D−+(t1, t2) ≡ D>(t1, t2) = −i
〈
ϕ(t1)ϕ(t2)

〉
, (A5)

which imply:

D>(1, 2) = D<(2, 1). (A6)

Similar to Majorana correlators, the 2-point correlator of
real bosons on the contour is fully specified by a single
real-time correlator, e.g. D>. The same result holds for
the bosonic self-energy Π.

2. Feynman rules for the Spin-2PI formalism

The conventional Feynman diagram rules are used
for interpreting the diagrams appearing throughout this
work:

α

α β

1 −1

2
εαβγ

C
d121 iDαβ(1, 2)

21

γ

β

iGαβ(1, 2)
α β

21
α β

iV αβ
R1R2

δC(t1, t2)
1 −1

2
εαβγ

C
d1

γ

β

α

The integer indices refer to the bundle of lattice site and
contour time in the diagrams above. Since the Majorana
fermion propagators possess no charge flow direction, one
may arbitrarily assign a direction to each line. The over-
all sign of each diagram, however, must be determined at
the end by counting the number of fermion permutations.

The power counting of the large-N extension is per-
formed as follows: (1) each Majorana fermion loop intro-
duces a factor of N resulting from the replica summation,
(2) each interaction and boson line introduces a factor of
1/N .

The vacuum diagrams accompany symmetry factors
which must be worked out case by case. The self-energy
Σ,Π and 4-point vertex Λ(2) diagrams have an extra
factor of i and i2, respectively.

3. Evolution of correlations functions in the
Spin-2PI formalism

The transition from the path-integral to the 2PI ef-
fective action Γ[G,D,ϕ] was briefly outlined in the main
text and is a straightforward generalization of the results
of Cornwall, Jackiw, and Tomboulis [37]. Within this for-
malism, the evolution equations follow from a variational
principle, reminiscent of Lagrangian dynamics of classi-
cal particles, with the quantum correlators playing the
role of generalized coordinates. Going back to Eqs. (8a)
and (8b) and making Γ stationary with respect to G, D,
and ϕ, we obtain:

G−1 = G−1
0 −M [ϕc]−Σ[G,D], (A7a)

D−1 = D−1
0 −Π[G,D], (A7b)

ϕµc,j(t) =
1

2N

N∑
σ=1

V µνjk ενγλ G
γ;σ,λ;σ
jj (t+, t). (A7c)

With the spin, replica, time, and space indices laid out
explicitly, the “bare” fermion and boson propagators are
written as:

G−1
0 (1, 2) = δσ1σ2

δα1α2
δj1j2 i∂t1δC(t1, t2),

D−1
0 (1, 2) = N (V −1)α1α2

j1j2
δC(t1, t2), (A8)

respectively. The contour Dirac δ-function is defined as
δC(t1, t2) = ±δ(t1 − t2) with the ± sign corresponding
to t1, t2 ∈ C±, respectively. In Eq. (A7a), M [ϕc](1, 2) =
−iδσ1σ2

δC(t1, t
+
2 ) δj1j2 ϕ

µ
c,j1

(t1) εµα1α2
the LO interaction

effect and describes the coupling of Majorana fermions
with the classical spin mean-field ϕc. According to
Eq. (A7c), the latter is instantaneously determined by
the Majorana tadpole contracted with a bare interaction
line. Thus, we find:

M [ϕc](1, 2) = −i δσ1σ2
δC(t1, t

+
2 ) δj1j2 εα1α2µ V

µν
j1k

ενγλ

× 1

2N

N∑
σ=1

Gγ;σ,λ;σ
kk (t+1 , t1) = 2×

1

2
, (A9)

which resembles the familiar Hartree self-energy that
describes the mean-field effects. We emphasize that the
Majorana tadpole is identified with the magnetization
in our formalism. Note that the M(1, 2) ∝ δC(t1, t

+
2 ) is

instantaneous and carries no memory effect. We will
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later show that truncating the approximation at this
level and neglecting the self-energies indeed yields the
Bloch equation.

Going beyond the LO approximation, Σ[G,D] and
Π[G,D] describe memory effects associated from the spa-
tiotemporal fluctuations of the exchange field. By defini-
tion, these self-energies are obtained from the variations
of Γ2[G,D]:

Σ[G,D](1, 2) ≡ 2
δΓ2[G,D]

δG(1, 2)
,

Π[G,D](1, 2) ≡ 2
δΓ2[G,D]

δD(1, 2)
. (A10)

We recall that Γ2[G,D] is formally equivalent to the sum
of 2PI vacuum diagrams constructed from the interaction

vertex Lint[η,ϕ] = i
2 εαβγ ϕ

α
j η

β;σ
j ηγ;σ

j and admits a sys-

tematic expansion in 1/N . Here, we truncate the series
at the NLO level:

ΓNLO
2 [G,D] =

1

4
tr[DΠ0] = , (A11)

where Πµν
0 (1, 2) = i εµαβ ενγλ

∑N
σ=1 G

α;σ,γ;σ
j1j2

(t1, t2)

Gβ;σ,λ;σ
j1j2

(t1, t2) is the Majorana bubble. Since D ∼ 1/N
and the factor of N resulting from the replica summa-
tion in the Majorana bubble, we find ΓNLO

2 ∼ O(1). This
must be compared to the LO term in Γint which is O(N).
The resulting NLO self-energies are given as:

ΣNLO(1, 2) = 4× 1 2

= i εα1β1µDµνj1j2(t1, t2) ενα2β2
Gβ1β2

j1j2
(t1, t2),

ΠNLO(1, 2) = 2× 1 2
=

1

2
Π0(1, 2). (A12)

Having derived the explicit expressions for the self-
energies, we discuss the derivation of evolution equa-
tions as the next step. Our starting point are the cou-
pled Dyson’s equations given in Eqs. (A7a) and (A7b).
Strictly speaking, Dyson’s equations are differential iden-
tities on the contour functions. They can be cast into a
more useful form by acting them from the left and right
hand side by G and D, respectively, resulting in a set of
contour integro-differential equations:

[
iδα1µ δj1k ∂t1 + iϕνc,k(t1) ενα1µ

]
Gµα2

kj2
(t1, t2) = δ(1, 2) +

∫
C

dτ Σα1µ
j1k

(t1, τ)Gµα2

kj2
(τ, t2), (A13a)

−
[
iδµα2

δkj2∂t2 − iϕνc,k(t1) ενµα2

]
Gα1µ
j1k

(t1, t2) = δ(1, 2) +

∫
C

dτ Gα1µ
j1k

(t1, τ)Σµα2

kj2
(τ, t2), (A13b)

Dα1β1

j1j2
(t1, t2) =

1

N
V α1α2
j1j2

δC(t1, t2) +
1

N
V α1µ
j1k

∫
C

dτ Πµν
kl (t1, τ)Dνα2

lj2
(τ, t2), (A14a)

Dα1β1

j1j2
(t1, t2) =

1

N
V α1α2
j1j2

δC(t1, t2) +
1

N

∫
C

dτ Dα1µ
j1k

(t1, τ)Πµν
kl (τ, t2)V να2

lj2
. (A14b)

We have defined shorthand δ(1, 2) ≡ δj1j2 δα1α2
δC(t1, t2)

and the contour integral
∫
C dtA(t) is interpreted as∫∞

t0
dtA(t ∈ C+) −

∫∞
t0

dtA(t ∈ C−). Eq. (A13a)

and its adjoint Eq. (A13b) are referred to as Kadanoff-
Baym (KB) equations. The convolution integrals of self-
energies and correlators manifestly show memory effects,
which is a shared feature of beyond mean-field approxi-
mations.

The spatial structure of Eqs. (A13a)-(A14b) can be
simplified by noting that physical initial states imply ini-
tial correlations between pairs of Majorana operators on
the same site, i.e. Gα1α2

j1j2
(t0, t0) ∝ δj1j2 . Crucially, this

property extends to all times in the KB dynamics, inde-
pendent of the order of truncation in 1/N . To see this,
one first establishes that the assumption Gj1j2(t1, t2) ∝
δj1j2 for t0 ≤ t1, t2 ≤ T implies Σj1j2(t1, t2) ∝ δj1j2 in
the same domain. The causal structure of Eqs. (A13a)-

(A13b) subsequently extends this property to an in-
finitesimally larger domains, and eventually to all times
by induction. Therefore, we can always make the follow-
ing simplifying substitution in the KB equation:

Gα1α2
j1j2

(t1, t2)→ δj1j2 Gα1α2
j1j1

(t1, t2),

Σα1α2
j1j2

(t1, t2)→ δj1j2 Σ
α1α2
j1j1

(t1, t2). (A15)

The LO approximation: The KB equations reduce to the
mean-field Bloch equation upon truncation at the LO
level which amounts to neglecting fluctuation self-energy
corrections Σ → 0. In this limit, the KB equations imply:

i∂t1Gα1α2,>
jj (t1, t2) + iϕνc,j(t1) ενα1µ Gµα2

jj (t1, t2) = 0,

−i∂t2Gα1α2,>
jj (t1, t2) + iϕνc,j(t2) ενµα2

Gα1µ
jj (t1, t2) = 0.

(A16)

Subtracting the equations from one another, setting t2 =
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t1 = t and using Eq. (7), we finally obtain:

∂t〈Ŝj(t)〉 = ϕc,j × 〈Ŝj(t)〉, (A17)

which is the Bloch equation as anticipated.

The NLO approximation: Including self-energy correc-
tions, the time convolutions appearing in the KB equa-
tions prohibit us from arriving at a closed equation for
the equal-time Green’s functions and we inevitably need
to solve for the complete unequal time Green’s function.
For concreteness, we consider the case of spin spirals
hereafter. The spatial structure of the KB equations
can be significantly simplified by applying the unwinding
unitary transformation, either directly on Eqs. (A13a)-
(A14b) or on the spin Hamiltonian. Either way, the
initial spiral state transforms into an uncorrelated x-
polarized FM state |Ψ̃0〉 ≡

⊗
j | →〉j at the expense of

an anisotropic interaction (see Eq. 13). The 2-point cor-
relator of Majorana fermions at t = t0 is easily found
as:

Gα1α2,>
j1j2

(t0, t0) = δj1j2

−i/2 0 0 −i/2
0 −i/2 1/2 0
0 −1/2 −i/2 0
−i/2 0 0 −i/2

 .

(A18)

The exchange field correlator at t = t0 is not an indepen-
dent degree of freedom and is determined by G(t0, t0),
see Eq. (A12). For translationally invariant initial states
as such, G and Σ further become independent of the lat-
tice site. Furthermore, Dj1j2 depends only on the dis-
tance and at the NLO level, Πj1j2 is local as well. The
simplified structure of the correlators and self-energies is
summarized as follows:

G(1, 2)→ δR1R2
Gαβ(t1, t2),

Σ(1, 2)→ δR1R2 Σ
αβ(t1, t2),

D(1, 2)→ DαβR1−R2
(t1, t2)

F.T.−−−→ Dαβk (t1, t2),

Π(1, 2)→ δr1r2
Παβ(t1, t2).

The KB equations can be written explicitly in terms
of G> and D> using the Langreth rules [78]. We quote
the final result, setting N = 1:

i∂t1Gα1α2(t1, t2) + iϕα1µ
c (t1)Gµα2,>(t1, t2) =

∫ t1

t0

dτ
[
Σα1µ,>(t1, τ) +Σµα1,>(τ, t)

]
Gµα2,>(τ, t2)

−
∫ t2

t0

dτ Σα1µ,>(t1, τ)
[
Gµα2,>(τ, t2) + Gα2µ,>(t2, τ)

]
, (A19a)

−i∂t2Gα1α2(t1, t2) + iGα1µ,>(t1, t2)ϕµα2
c (t2) =

∫ t1

t0

dτ
[
Gα1µ,>(t1, τ) + Gµα1,>(τ, t)

]
Σµα2,>(τ, t2)

−
∫ t2

t0

dτ Gα1µ,>(t1, τ)
[
Σµα2,>(τ, t2) +Σα2µ,>(t2, τ)

]
, (A19b)

Dα1α2,>
k (t1, t2) = V α1µ

k Πµν,>(t1, t2)V να2

k + V α1µ
k

∫ t1

t0

dτ
[
Πµν,>(t1, τ)−Πνµ,>(τ, t1)

]
Dνα2,>

k (τ, t2)

− V α1µ
k

∫ t2

t0

dτ Πµν,>(t1, τ)
[
Dνα2,>

k (τ, t2)−Dα2ν,>
k (t2, τ)

]
, (A20a)

Dα1α2,>
k (t1, t2) = V α1µ

k Πµν,>(t1, t2)V να2

k +

∫ t1

t0

dτ
[
Dα1µ,>

k (t1, τ)−Dµα1,>
k (τ, t1)

]
Πµν,>(τ, t2)V να2

k

−
∫ t2

t0

dτ Dα1µ,>
k (t1, τ)

[
Πµν,>(τ, t2)−Πνµ,>(t2, τ)

]
V να2

k . (A20b)

The self-energies Σ> and Π> are read from Eq. (A12).
The last explicit equations are suitable for devising a
numerical forward propagation scheme. Starting from

G0(t0, t0), we calculate Σ(t0, t0) and Π(t0, t0) from
Eq. (A12), and D(t0, t0) from Eq. (A20a). The casual
structure Eqs. (A19a)-(A20b) allows us to propagate
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{G, Σ,D, Π} in (t1, t2) in discrete time steps of size
∆t. This is achieved using a robust predictor-corrector
method with guaranteed accuracy to O(∆t3).

Calculating spin-spin correlators in the Spin-2PI formal-
ism: In the framework of 2PI effective actions, higher
order correlators are “reconstructed” from the history of
2-point correlators. Here, we are interested in the con-
nected spin-spin correlator:

iχα1α2
j1j2

(t1, t2) =
〈
TC
[
Ŝα1
j1

(t1)Ŝα2
j2

(t2)
]〉

−
〈
Ŝα1
j1

(t1)
〉 〈

Ŝα2
j2

(t2)
〉
, (A21)

where the spin operators are shorthand notations for
Eq. (4). The spin-spin correlator is found from the Ma-
jorana L-function, defined as:

L(11̄; 22̄) ≡ 〈TC [η(1) η(1̄) η(2) η(2̄)]〉 − iG(1, 1̄) iG(2, 2̄),
(A22)

by contracting ε-symbols with its left and right pair of
fermion lines:

χα1α2
j1j2

(t1, t2) =
i

4
εα1β1γ1

Lβ1γ1;β2γ2

j1j1;j2j2
(t+1 , t1 ; t+2 , t2 ) εα2β2γ2

.

(A23)
The L-function in turn satisfies a non-equilibrium Bethe-
Salpeter equation on the C contour:

L(11̄; 22̄) = Π2(11̄; 22̄)

+

∫
C

d3 d3̄ d4 d4̄Π2(11̄; 33̄)Λ(2)(33̄; 44̄)L(44̄; 22̄),

(A24)

where Π2(11̄; 22̄) = G(12)G(2̄1̄) − G(12̄)G(1̄2)
and the 2PI irreducible vertex Λ(2)(33̄; 44̄) =
δ2Γint[G]/δG(33̄)δG(44̄); here, Γint[G] is given in Eq. (8b)
with ϕc and D substituted in terms of G from the
stationarity condition Eqs. (A7b) and (A7c).

The NLO effective action yields three contributions to
Λ(2):

Λ(2) =
1

4
×

3

3̄ 4̄

4

︸ ︷︷ ︸
Λ

(2)
RPA

−1

2
×

3

3̄ 4̄

4

︸ ︷︷ ︸
Λ

(2)
MT

+8×
3

3̄ 4̄

4

︸ ︷︷ ︸
Λ

(2)
AL

+
3

3̄ 4̄

4
± ± .

(A25)
The last symbol stands for the three permutations of
the first three diagrams obtained by (3 ↔ 3̄), (4 ↔ 4̄),
and (3 ↔ 3̄, 4 ↔ 4̄) with signs −, − and +, respec-
tively. These vertex corrections are structurally simi-

lar to the RPA, Maki-Thompson (MT), and Aslamazov-
Larkin (AL) vertex corrections accounting for supercon-
ducting fluctuations in metals [79]. Explicitly, these ver-
tex parts are given as:

Λ
(2)
RPA(33̄; 44̄) =

1

2
εα3α3̄µ iV

µν
j3j4

1

2
ενα4α4̄

δj3j3̄ δj4j4̄

× δC(t3, t3̄) δC(t4, t4̄) δC(t3, t4), (A26a)

Λ
(2)
MT(33̄; 44̄) =

1

2
εα3α4µ iDµνj3j3̄(t3, t3̄)

1

2
ενα3̄α4̄

δj3j4 δj3̄j4̄

× δC(t3, t4) δC(t3̄, t4̄), (A26b)

Λ
(2)
AL(33̄; 44̄) = iGβ3β3̄

j3j3̄
(t3, t3̄) iGβ4β4̄

j4j4̄
(t4, t4̄)

× 1

2
εα3β3µ iDµνj3j4(t3, t4)

1

2
ενα4β4

× 1

2
εα3̄β3̄µ̄ iD

µ̄ν̄
j3̄j4̄

(t3̄, t4̄)
1

2
εν̄α4̄β4̄

(A26c)

It is easily noticed that Λ
(2)
RPA ∼ O(1), Λ

(2)
MT ∼ O(1/N),

and Λ
(2)
AL ∼ O(1/N2). Therefore, we may drop the latter

if accuracy at the NLO order is desired.
For translation invariant states, it can be shown that

L(11̄; 22̄) ∼ L
α1α1̄;α2α2̄

R1−R2
(t1t1̄; t2t2̄) δR1R1̄

δR2R2̄
. Taking

a Fourier transform in R1 − R2 yields decoupled inte-
gral equations for each momentum transfer q. The tem-
poral structure of the BSE remains formidable. Per-
forming the contour integral and discrete summations
over 3, 3̄ variables in Eq. (A24) and contracting the
right legs according to Eq. (A23), we reach to an in-
tegral equation for the 3-time object Γ

α1α1̄;µ
q (t1, t1̄; t2) ≡

(−i/2)L
α1α1̄;α2α2̄
q (t1, t1̄; t+2 , t2) εµα2α2̄

in two contour
times t1, t1̄ (with fixed external time t2).

The first step in solving the BS equation is to recast
it in terms of functions of ordinary times. In compari-
son to the KB equation, this step is significantly more
involved here due to the complex real-time structure of
3-time and 4-time CTP functions and multiple contour
integrals. We leave the cumbersome details for a sepa-
rate publication and solely outline the procedure here.
We showed earlier in Sec. A 1 that the 4 real-time matrix
elements of 2-time functions such as G and D can be fully
specified using a single real-time function, e.g. G>. A
similar analysis of Γ

α1α1̄;µ
q (t1, t1̄; t2), taking into account

symmetries and unitarity of evolution, reveals that the 8
real-time components of 3-time function as such can be
fully specified by 3 independent functions. Accordingly,
the contour BS equation can be explicitly written as 3
coupled two-dimensional integral equations in ordinary
times; the latter is numerically solved by discretizing the
integrals using approximate quadratures and solving the
resulting linear system.
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