249 research outputs found

    Equal-Spin Andreev Reflection in Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor

    Full text link
    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices

    Dominant non-local superconducting proximity effect due to electron-electron interaction in a ballistic double nanowire

    Full text link
    Cooper pair splitting (CPS) can induce non-local correlation between two normal conductors coupling to a superconductor. CPS into a double one-dimensional electron gas is an appropriate platform for extracting large amount of entangled electron pairs and one of the key ingredients for engineering Majorana Fermions with no magnetic field. Here we study CPS using a Josephson junction of a gate-tunable ballistic InAs double nanowire. The measured switching current into the two nanowires significantly larger than sum of that into the respective nanowires, indicating the inter-wire superconductivity dominant compared to the intra-wire superconductivity. From dependence on the number of propagating channels in the nanowires, the observed CPS is assigned to one-dimensional electron-electron interaction. Our results will pave the way for utilizing one-dimensional electron-electron interaction to reveal physics of high-efficient CPS and engineer Majorana Fermions in double nanowire systems via CPS

    超伝導-InAsドット/ナノワイヤー接合の伝導特性

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 樽茶 清悟, 東京大学准教授 町田 友樹, 東京大学教授 永長 直人, 東京大学教授 平川 一彦, 大阪大学教授 大岩 顕University of Tokyo(東京大学

    Possible ability of bovine follicular fluid to attract migrating bull spermatozoa

    Get PDF
    AimTo examine the potential of bovine follicular fluid (BFF) to attract bull spermatozoa. MethodsThe ability of the BFF to attract bull sperm was evaluated by observing changes in sperm migration after being placed in a cross-column chamber. The movement parameters of the heads and flagella of the sperm that were attracted to the BFF were analyzed by using the Computer Assisted Sperm Analysis system. ResultsIt was observed that 61.6% of the bull sperm migrated toward the BFF when the BFF was used at a concentration of 0.1%, but 67.2% of the sperm did not migrate toward the BFF at a concentration of 10%. Relatively larger numbers of both precapacitated and postcapacitated bull sperm migrated toward the BFF (0.1%). The ability of the 0.1% BFF to attract sperm probably affected both the normal artificial insemination (AI) fertility sperm and the poor AI fertility spermatozoa. The flagellar curvilinear ratio of the sperm winding to the 0.1% BFF was significantly higher than that of the prewinding sperm. ConclusionThese results could suggest that BFF potentially attracts bull sperm at a certain concentration, irrespective of the capacitation status of the sperm. Although the mechanism by which this attraction occurs remains unclear, these data imply that it could be related to BFF-dependent changes in the sperm flagellar curvilinear ratio.ArticleREPRODUCTIVE MEDICINE AND BIOLOGY.16(2):133-138(2017)journal articl

    Structural distortion and suppression of superconductivity in stoichiometric B1-MoN epitaxial thin films

    Get PDF
    Molybdenum nitride films with the NaCl structure (B1-MoN) were epitaxially grown on α- Al2 O3 (001) and MgO(001) substrates at 973 K by pulsed laser deposition (PLD) under nitrogen radical irradiation. The highly crystalline epitaxial films enabled us to determine the three-dimensional cell parameters, which was motivated by theoretical calculations that B1-MoN, a predicted superconductor, is elastically unstable against tetragonal and trigonal distortions. On α- Al2 O3 (001), the B1-MoN phase (composition, Mo1 N0.98) was grown with its (111) planes parallel to the substrate surface. X-ray diffraction analysis with a multiaxes diffractometer detected only a small trigonal lattice distortion [a=0.4219(3) nm, α=89.28(5)°] with an expansion along the [111] direction perpendicular to the substrate surface. The film grown on MgO(001) had the MoN1.03 composition and showed a slight tetragonal distortion (a=0.4213 and c=0.424 nm) due to fitting to the MgO substrate lattice (a=0.4213 nm). These two stoichiometric films showed no superconductivity above 2 K. A lower nitrogen content (MoN0.86) film was obtained on α- Al2 O3 (001) using a higher deposition rate. The corresponding film had a much smaller lattice constant [a=0.4184(3) nm], and a similar distortion [α=89.41(5)°]. The B1- MoN0.86 film showed superconductivity with a transition temperature Tc =4.2 K. The suppression of the superconductivity of the former stoichiometric phase can be interpreted in terms of the lattice expansion

    Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm

    Get PDF
    Eggs of many marine and mammalian species attract sperm by releasing chemoattractants that modify the bending properties of flagella to redirect sperm paths toward the egg. This process, called chemotaxis, is dependent on extracellular Ca2+. We used stroboscopic fluorescence imaging to measure intracellular Ca2+ concentration ([Ca2+]i) in the flagella of swimming sea urchin sperm. Uncaging of cyclic GMP induced Ca2+ entry via at least two distinct pathways, and we identified a nimodipine-sensitive pathway, compartmentalized in the flagella, as a key regulator of flagellar bending and directed motility changes. We found that, contrary to current models, the degree of flagellar bending does not vary in proportion to the overall [Ca2+]i. Instead we propose a new model whereby flagella bending is increased by Ca2+ flux through the nimodipine-sensitive pathway, and is unaffected by [Ca2+]i increases through alternative pathways

    Cooper-pair splitting in two parallel InAs nanowires

    Full text link
    We report on the fabrication and electrical characterization of an InAs double - nanowire (NW) device consisting of two closely placed parallel NWs coupled to a common superconducting electrode on one side and individual normal metal leads on the other. In this new type of device we detect Cooper-pair splitting (CPS) with a sizeable efficiency of correlated currents in both NWs. In contrast to earlier experiments, where CPS was realized in a single NW, demonstrating an intrawire electron pairing mediated by the superconductor (SC), our experiment demonstrates an inter- wire interaction mediated by the common SC. The latter is the key for the realization of zero-magnetic field Majorana bound states, or Parafermions; in NWs and therefore constitutes a milestone towards topological superconductivity. In addition, we observe transport resonances that occur only in the superconducting state, which we tentatively attribute to Andreev Bound states and/or Yu-Shiba resonances that form in the proximitized section of one NW
    corecore