384 research outputs found

    Effects of cold exposure on metabolites in brown adipose tissue of rats

    Get PDF
    Brown adipose tissue (BAT) plays an important role in regulation of energy expenditure while adapting to a cold environment. BAT thermogenesis depends on uncoupling protein 1 (UCP1), which is expressed in the inner mitochondrial membranes of BAT. Gene expression profiles induced by cold exposure in BAT have been studied, but the metabolomic biological pathway that contributes to the activation of thermogenesis in BAT remains unclear. In this study, we comprehensively compared the relative levels of metabolites between the BAT of rats kept at room temperature (22 °C) and of those exposed to a cold temperature (4 °C) for 48 h using capillary electrophoresis (CE) time-of-flight mass spectrometry (TOFMS) and liquid chromatography (LC)-TOFMS. We identified 218 metabolites (137 cations and 81 anions) by CE-TOFMS and detected 81 metabolites (47 positive and 34 negative) by LC-TOFMS in BAT. We found that cold exposure highly influenced the BAT metabolome. We showed that the cold environment lead to lower levels of glycolysis and gluconeogenesis intermediates and higher levels of the tricarboxylic acid (TCA) cycle metabolites, fatty acids, and acyl-carnitine metabolites than control conditions in the BAT of rats. These results indicate that glycolysis and β-oxidation of fatty acids in BAT are positive biological pathways that contribute to the activation of thermogenesis by cold exposure, thereby facilitating the generation of heat by UCP1. These data provide useful information for understanding the basal metabolic functions of BAT thermogenesis in rats in response to cold exposure

    Preliminary Report of the Waseda University Excavations at Dahshur North:Tenth Season,2004-2005

    Get PDF
    Articl

    Driver authentication using brain waves while route tracing as a mental task

    Get PDF
    From the viewpoint of user management, continuous or on-demand biometric authentication is effective for achieving higher security. In such a case, the biometrics which is able to present biometric data unconsciously is needed and we have proposed to use the brain wave as the unconscious biometrics. In this paper, assuming driver authentication, we measure brain waves of drivers when they are tracing routes as a mental task. And we evaluate verification performance using the difference between the mean power spectrum at α-β band in relaxed condition and that in mental-tasked condition as an individual feature. As a result, the EER of 31 % is obtained among 12 subjects

    Improved Recovery of Exfoliated Colonocytes from Feces Using Newly Developed Immunomagnetic Beads

    Get PDF
    We demonstrated the feasibility of a new methodology for isolating colonocytes from feces. To reduce costs and improve the recovery rate of colonocytes from feces, we attempted to develop new immunomagnetic beads. Several sizes of magnetic beads were prepared and tagged with a monoclonal antibody against EpCAM. We made several new monoclonal antibodies against EpCAM, and each monoclonal antibody was tagged to the magnetic beads. In the simulation, the most efficient recovery of HT-29 cells was obtained using the smallest size of beads. Also, beads tagged with a monoclonal antibody with a higher affinity against EpCAM had a higher recovery rate. Similar results were obtained when the smallest size of beads with the highest-affinity monoclonal antibody was applied to clinical samples. The newly developed immunomagnetic beads may be useful for isolating colorectal cancer cells from feces, enabling the cytological or molecular biological diagnosis of CRC

    Myocardial sympathetic denervation prevents chamber-specific alteration of beta-adrenergic transmembrane signaling in rabbits with heart failure

    Get PDF
    Objectives.The purpose of this study was to assess the effect of myocardial sympathetic denervation on the chamber-specific alteration of beta-adrenergic signaling in left ventricular failure in rabbits.Background.Local abnormalities in sympathetic nerve terminals, including the neuronal reuptake of norepinephrine, are thought to be responsible for the chamber-specific regulation of beta-adrenergic signaling in heart failure.Methods.Sixteen rabbits were given 6-hydroxydopamine, 25 mg/kg body weight intravenously on days 1 and 2 and 50 mg/kg intravenously on days 7 and 8. Another 16 rabbits received vehicle. Aortic regurgitation was induced in eight of the 6-hydroxydopamine—treated and eight of the vehicle-treated rabbits on day 14. Another eight of the 6-hydroxydopamine—treated and eight of the vehicletreated rabbits underwent a sham operation. The hearts were excised for biochemical analysis on day 21.Results.Hemodynamic characteristics on day 21 showed left ventricular failure in both the aortic regurgitation groups. The plasma norepinephrine concentration on day 21 was higher in both the aortic regurgitation groups than in the sham groups. The beta-adrenoceptor densities and isoproterenol plus 5′guanylylimidodiphosphate-, 5′-guanylylimidodiphosphate- and sodium fluoride-stimulated adenylyl cyclase activities were decreased only in the failing left ventricle of the vehicle-pretreated aortic regurgitation group, but in both ventricles of the 6-hydroxydopamine-pretreated aortic regurgitation group. The basal and forskolin-stimulated adenylyl cyclase activities were similar in both the aortic regurgitation groups and in the sham groups.Conclusions.Sympathetic denervation prevented chamberspecific alterations in beta-adrenergic signaling in acute left ventricular failure. Local loss of sympathetic nerve endings, and especially the defective neuronal norepinephrine reuptake, are likely to be responsible for the chamber-specific alteration of the beta-adrenoceptor-G protein-adenylyl cyclase system in heart failure in rabbits

    Catalyst deactivation of a silica-supported bismuth-molybdenum complex oxide and the related complex oxides for the oxidative dehydrogenation of 1-butene to 1,3-butadiene

    Get PDF
    This study was an examination of the catalyst deactivation of a silica-supported bismuth-molybdenum complex oxide, and that of catalysts used in the absence of bismuth, for the oxidative dehydrogenation of 1-butene. Due to the detection of deactivation, the molar ratio of 1-butene against oxygen in the reactant gas was adjusted to a ratio similar to that used in industrial processes where reaction temperatures average 100 K higher. Regardless of the presence or absence of bismuth in the catalysts, the conversion of 1-butene was decreased by 6 h on-stream. Both the progress of the coking from the inlet to the outlet of the catalyst and the reduction of molybdenum in the catalysts directly contributed to the deactivation. X-ray photoelectron spectrometry revealed that a greater reduction of molybdenum in the near-surface region and a smaller partial pressure of oxygen (P(O2)) in the reactant gas, although the molybdenum on the surface was not reduced at all. This indicated that the lattice oxygen was pumped from the near-surface region to the surface during the reaction and the oxygen-poor conditions of the near-surface region both in the gas and catalyst phases were formed at a smaller P(O2), which resulted in the enhancements of both the reduction of molybdenum and that of coking. Based on the thermogravimetric analysis, the silica-supported bismuth-molybdenum complex oxide used at P(O2) = 4.1 kPa (color of the catalyst = black) was increased in weight while that used at P(O2) = 16.4 kPa (color of the catalyst = gray) showed a weight decrease, which indicated that the weight decrease caused by the reduction in molybdenum in the near-surface region used at 4.1 kPa was greater than the weight increase from the coking. It was concluded that the reduction in molybdenum followed by the coking on the catalyst surface were the main factors in the catalyst deactivation
    corecore