4 research outputs found

    Effect of exogenous gibberellic acid on germination, seedling growth and phosphatase activities in Lettuce under salt stress

    Get PDF
    The effect of gibberellic acid on germination and seedling growth of lettuce variety, Vista, under salinity conditions was studied. A reduction in germination percentage, roots and shoots length and fresh weight were observed under salt stress. At the same time, acid phosphatase and phytase activities in roots were reduced by NaCl. The exogenous application of gibberellin increased germination percentage and improved length and fresh weight of roots and shoots under salt treatment. It also increased both acid phosphatase and phytase activities in roots under this constraint. The application of gibberellic acid compensated for the negative effect of salinity.Keywords: Acid phosphatase, germination, gibberellic acid, lettuce, phytase, salinity, seedling growt

    Enhanced accumulation of root hydrogen peroxide is associated with reduced antioxidant enzymes under isoosmotic NaCl and Na2SO4 salinities

    Get PDF
    The inhibitory effect of salt stress on lettuce is one of the main reasons for the reduction of plant growth and crop productivity. In the present study, the response of two lettuce varieties Verte and Romaine to isoosmotic NaCl and Na2SO4 treatments were examined. Both varieties were grown in pots containing nutrient Hoagland solution with or without 100 mM NaCl or 77 mM Na2SO4. Relative growth rate (RGR), hydraulic parameters, root ion content, proline and several antioxidant activities in roots were measured after 12 days of treatment. After prolonged exposure to salt stress, relative growth rate and water content of lettuce significantly decreased. Roots accumulated high level of Na+ under both salts, whereas the accumulation of K+ and Ca2+ decreased. High level of Na+ inside the cells inhibited the K+ uptake and resulted in increased K+/Na+ ratio. In addition, salt stress also caused an increase in the accumulation of proline. This result suggests that proline may play a crucial role in protecting lettuce under salt stress especially in response to Na2SO4 treatment. Membrane damage estimated by electrolyte leakage (EL) increased especially in response to Na2SO4 treatment in both varieties, but Verte had significantly lower EL relative to Romaine under 100 mM NaCl. A reduction in the activities of CAT in both varieties under 100 mM, and GPX activity in Verte under Na2SO4 treatment coincided with an increase in H2O2 level, indicative of cellular damage and a general depression of the antioxidant enzymatic system in lettuce roots.Keywords: Lettuce, NaCl, Na2SO4, RGR, mineral nutrition, antioxidant activities, prolin

    Combined effect of hormonal priming and salt treatments on germination percentage and antioxidant activities in lettuce seedlings

    Get PDF
    Hormonal priming is a pre-sowing treatment that improves seed germination performance and stress tolerance. To understand the physiology of hormonal priming and its association with post priming stress tolerance, we investigated the effect of hormonal priming with increasing gibberellic acid (GA3) concentrations (0, 3, 4.5 and 6 mM) on seedling growth and antioxidant system in lettuce. Germination percentage was higher in lettuce seedlings derived from primed seeds. Radicle and hypocotyl length and dry weight were reduced by salt treatment to a greater extent in non-primed than in primed seeds. Hormonal priming with 4.5 mM GA3 induced the most dramatic decreases in electrolyte leakage (EL) and malondialdehyde (MDA) levels. NaCl increased catalase (CAT) activity in primed and non-primed seeds. The total ascorbate level remained constant in both primed and non-primed seeds under NaCl constraint. These results suggest that hormonal priming might have increased the salt tolerance of lettuce seeds through enhancing the activities of antioxidant enzymes and reducing the membrane damage as estimated using EL and MDA biomarkers.Key words: Ascorbate, germination, hormonal priming, lettuce, salinity
    corecore