118 research outputs found
Ground states and dynamics of population-imbalanced Fermi condensates in one dimension
By using the numerically exact density-matrix renormalization group (DMRG)
approach, we investigate the ground states of harmonically trapped
one-dimensional (1D) fermions with population imbalance and find that the
Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with
nonzero center-of-mass momentum, is realized for a wide range of parameters.
The phase diagram comprising the two phases of i) an LO state at the trap
center and a balanced condensate at the periphery and ii) an LO state at the
trap center and a pure majority component at the periphery, is obtained. The
reduced two-body density matrix indicates that most of the minority atoms
contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we
also investigate the real-time dynamics of a system of 1D fermions in response
to a spin-flip excitation.Comment: 20 pages, 15 figures, accepted for publication in New Journal of
Physic
Superfluid phase transition and strong-coupling effects in an ultracold Fermi gas with mass imbalance
We investigate the superfluid phase transition and effects of mass imbalance
in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation)
crossover regime of an cold Fermi gas. We point out that the Gaussian
fluctuation theory developed by Nozi\`eres and Schmitt-Rink and the -matrix
theory, that are now widely used to study strong-coupling physics of cold Fermi
gases, give unphysical results in the presence of mass imbalance. To overcome
this problem, we extend the -matrix theory to include higher-order pairing
fluctuations. Using this, we examine how the mass imbalance affects the
superfluid phase transition. Since the mass imbalance is an important key in
various Fermi superfluids, such as K-Li Fermi gas mixture, exciton
condensate, and color superconductivity in a dense quark matter, our results
would be useful for the study of these recently developing superfluid systems.Comment: 7 pages, 4 figures, Proceedings of QFS-201
Low temperature properties of the fermionic mixtures with mass imbalance in optical lattice
We study the attractive Hubbard model with mass imbalance to clarify low
temperature properties of the fermionic mixtures in the optical lattice. By
combining dynamical mean-field theory with the continuous-time quantum Monte
Carlo simulation, we discuss the competition between the superfluid and density
wave states at half filling. By calculating the energy and the order parameter
for each state, we clarify that the coexisting (supersolid) state, where the
density wave and superfluid states are degenerate, is realized in the system.
We then determine the phase diagram at finite temperatures.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
Diagnostic techniques for inflammatory eye disease: past, present and future: a review
Investigations used to aid diagnosis and prognosticate outcomes in ocular inflammatory disorders are based on techniques that have evolved over the last two centuries have dramatically evolved with the advances in molecular biological and imaging technology. Our improved understanding of basic biological processes of infective drives of innate immunity bridging the engagement of adaptive immunity have formed techniques to tailor and develop assays, and deliver targeted treatment options. Diagnostic techniques are paramount to distinguish infective from non-infective intraocular inflammatory disease, particularly in atypical cases. The advances have enabled our ability to multiplex assay small amount of specimen quantities of intraocular samples including aqueous, vitreous or small tissue samples. Nevertheless to achieve diagnosis, techniques often require a range of assays from traditional hypersensitivity reactions and microbe specific immunoglobulin analysis to modern molecular techniques and cytokine analysis. Such approaches capitalise on the advantages of each technique, thereby improving the sensitivity and specificity of diagnoses. This review article highlights the development of laboratory diagnostic techniques for intraocular inflammatory disorders now readily available to assist in accurate identification of infective agents and appropriation of appropriate therapies as well as formulating patient stratification alongside clinical diagnoses into disease groups for clinical trials
- …