54 research outputs found

    Myofascial force transmission causes interaction between adjacent muscles and connective tissue: Effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle

    Get PDF
    Muscles within the anterior tibial compartment (extensor digitorum longus: EDL. tibialis anterior: TA, and extensor hallucis longus muscles: EHL) and within the peroneal compartment were excited simultaneously and maximally. The ankle joint was fixed kept at 90°. For EDL length force characteristics were determined. This was performed first with the anterior tibial compartment intact (1), and subsequently after: (2) blunt dissection of the anterior and lateral interface of EDL and TA. (3) Full longitudinal lateral fasciotomy of the anterior tibial compartment. (4) Full removal of TA and EHL muscles. Length-force characteristics were changed significantly by these interventions. Blunt dissection caused a force decrease of approximately 10% at all lengths, i.e., without changing EDL optimum or active slack lengths. This indicates that intermuscular connective tissue mediates significant interactions between adjacent muscles. Indications of its relatively stiff mechanical properties were found both in the physiological part of the present study, as well as the anatomical survey of connective tissue. Full lateral compartmental fasciotomy increased optimum length and decreased active slack length, leading to an increase of length range (by ≈47%). while decreasing optimal force. As a consequence an increase in force for the lower length range was found. Such changes of length force characteristics are compatible with an increased distribution of fiber mean sarcomere length. On the basis of these results, it is concluded that extramuscular connective tissue has a sufficiently stiff connection to intramuscular connective tissue to be able to play a role in force transmission. Therefore, in addition to intramuscular myofascial force transmission, extramuscular force transmission has to be considered within intact compartments of limbs. A survey of connective tissue structures within the compartment indicated sheet-like neuro-vascular tracts to be major components of extramuscular connective tissue with connections to intramuscular connective tissue stroma. Removal of TA and EHL yielded yet another decrease of force (mean for optimal force ≈10%). No significant changes of optimum and active slack lengths could be shown in this case. It is concluded that myofascial force transmission should be taken into account when considering muscular function and its coordination, and in clinical decisions regarding fasciotomy and repetitive strain injury

    Remodeling of Rat M. Gastrocnemius Medialis During Recovery From Aponeurotomy

    Get PDF
    Aponeurotomy is a surgical intervention by which the aponeurosis is transsected perpendicularly to its longitudinal direction, halfway along its length. This surgical principle of aponeurotomy has been applied also to intramuscular lengthening and fibrotomia. In clinics, this intervention is performed in patients with cerebral palsy in order to lengthen or weaken spastic and/or short muscles. If the aponeurotomy is performed on the proximal aponeurosis, as is the case in the present study, muscle fibers located distally from the aponeurosis gap that develops lose their myotendinous connection to the origin. During recovery from this intervention, new connective (scar) tissue repairs the gap in the aponeurosis, as well as within the muscle belly. As a consequence, the aponeurosis is longer during and after recovery. In addition, the new connective tissue is more compliant than regular aponeurosis material. The aim of this study was to investigate changes in muscle geometry and adaptation of the number of sarcomeres in series after recovery from aponeurotomy of the proximal gastrocnemius medialis (GM) aponeurosis, as well as to relate these results to possible changes in the muscle length-force characteristics. Aponeurotomy was performed on the proximal aponeurosis of rat muscle GM and followed by 6 weeks of recovery. Results were compared to muscles of a control group and those of a sham-operated group. After recovery from aponeurotomy, proximal and distal muscle fiber lengths were similar to that of the control group. The mean sarcomere length from fibers located proximally relative to the aponeurosis gap remained unchanged. In contrast, fibers located distally showed 16–20% lower mean sarcomere lengths at different muscle lengths. The number of sarcomeres in series within the proximal as well as distal muscle fibers was unchanged. After recovery, muscle length-force characteristics were similar to those of the control group. A reversal of proximal-distal difference of fibers mean sarcomere lengths within muscles during recovery from aponeurotomy is hypothesized to be responsible for the lack of an effect. These results indicate that after recovery from aponeurotomy, geometrical adaptations preserved the muscle function. Moreover, it seems that the generally accepted rules of adaptation of serial sarcomere numbers are not applicable in this situation

    Myofascial force transmission via extramuscular pathways occurs between antagonistic muscles

    No full text
    Most often muscles (as organs) are viewed as independent actuators. To test if this is true for antagonistic muscles, force was measured simultaneously at: (1) the proximal and distal tendons of the extensor digitorum muscle (EDL) to quantify any proximo-distal force differences, as an indicator of myofascial force transmission, (2) at the distal tendons of the whole antagonistic peroneal muscle group (PER) to test if effects of EDL length changes are present and (3) at the proximal end of the tibia to test if myofascially transmitted force is exerted there. EDL length was manipulated either at the proximal or distal tendons. This way equal EDL lengths are attained at two different positions of the muscle with respect to the tibia and antagonistic muscles. Despite its relatively small size, lengthening of the EDL changed forces exerted on the tibia and forces exerted by its antagonistic muscle group. Apart from its extramuscular myofascial connections, EDL has no connections to either the tibia or these antagonistic muscles. Proximal EDL lengthening increased distal muscular forces (active PER ΔF ≈ +1.7%), but decreased tibial forces (passive from 0.3 to 0 N; active ΔF ≈ -5%). Therefore, it is concluded that these antagonistic muscles do not act independently, because of myofascial force transmission between them. Such a decrease in tibial force indicates release of pre-strained connections. Distal EDL lengthening had opposite effects (tripling passive force exerted on tibia; active PER force ΔF ≈ -3.6%). It is concluded that the length and relative position of the EDL is a co-determinant of passive and active force exerted at tendons of nearby antagonistic muscle groups. These results necessitate a new view of the locomotor apparatus, which needs to take into account the high interdependence of muscles and muscle fibres as force generators, as well as proximo-distal force differences and serial and parallel distributions of sarcomere lengths that are consequences of such interaction. If this is done properly, the effects of integrating a muscle fibre, muscle or muscle group into higher levels of organisation of the body will be evident. Copyright © 2008 S. Karger AG
    • …
    corecore