407 research outputs found
Weighted Dirac combs with pure point diffraction
A class of translation bounded complex measures, which have the form of
weighted Dirac combs, on locally compact Abelian groups is investigated. Given
such a Dirac comb, we are interested in its diffraction spectrum which emerges
as the Fourier transform of the autocorrelation measure. We present a
sufficient set of conditions to ensure that the diffraction measure is a pure
point measure. Simultaneously, we establish a natural link to the theory of the
cut and project formalism and to the theory of almost periodic measures. Our
conditions are general enough to cover the known theory of model sets, but also
to include examples such as the visible lattice points.Comment: 44 pages; several corrections and improvement
Close-packed dimers on the line: diffraction versus dynamical spectrum
The translation action of \RR^{d} on a translation bounded measure
leads to an interesting class of dynamical systems, with a rather rich spectral
theory. In general, the diffraction spectrum of , which is the carrier
of the diffraction measure, live on a subset of the dynamical spectrum. It is
known that, under some mild assumptions, a pure point diffraction spectrum
implies a pure point dynamical spectrum (the opposite implication always being
true). For other systems, the diffraction spectrum can be a proper subset of
the dynamical spectrum, as was pointed out for the Thue-Morse sequence (with
singular continuous diffraction) in \cite{EM}. Here, we construct a random
system of close-packed dimers on the line that have some underlying long-range
periodic order as well, and display the same type of phenomenon for a system
with absolutely continuous spectrum. An interpretation in terms of `atomic'
versus `molecular' spectrum suggests a way to come to a more general
correspondence between these two types of spectra.Comment: 14 pages, with some additions and improvement
Scaling of the Thue-Morse diffraction measure
We revisit the well-known and much studied Riesz product representation of the Thue-Morse diffraction measure, which is also the maximal spectral measure for the corresponding dynamical spectrum in the complement of the pure point part. The known scaling relations are summarised, and some new findings are explained
Symmetries and reversing symmetries of toral automorphisms
Toral automorphisms, represented by unimodular integer matrices, are
investigated with respect to their symmetries and reversing symmetries. We
characterize the symmetry groups of GL(n,Z) matrices with simple spectrum
through their connection with unit groups in orders of algebraic number fields.
For the question of reversibility, we derive necessary conditions in terms of
the characteristic polynomial and the polynomial invariants. We also briefly
discuss extensions to (reversing) symmetries within affine transformations, to
PGL(n,Z) matrices, and to the more general setting of integer matrices beyond
the unimodular ones.Comment: 34 page
Invaded cluster algorithm for critical properties of periodic and aperiodic planar Ising models
We demonstrate that the invaded cluster algorithm, recently introduced by
Machta et al, is a fast and reliable tool for determining the critical
temperature and the magnetic critical exponent of periodic and aperiodic
ferromagnetic Ising models in two dimensions. The algorithm is shown to
reproduce the known values of the critical temperature on various periodic and
quasiperiodic graphs with an accuracy of more than three significant digits. On
two quasiperiodic graphs which were not investigated in this respect before,
the twelvefold symmetric square-triangle tiling and the tenfold symmetric
T\"ubingen triangle tiling, we determine the critical temperature. Furthermore,
a generalization of the algorithm to non-identical coupling strengths is
presented and applied to a class of Ising models on the Labyrinth tiling. For
generic cases in which the heuristic Harris-Luck criterion predicts deviations
from the Onsager universality class, we find a magnetic critical exponent
different from the Onsager value. But also notable exceptions to the criterion
are found which consist not only of the exactly solvable cases, in agreement
with a recent exact result, but also of the self-dual ones and maybe more.Comment: 15 pages, 5 figures; v2: Fig. 5b replaced, minor change
A critical Ising model on the Labyrinth
A zero-field Ising model with ferromagnetic coupling constants on the
so-called Labyrinth tiling is investigated. Alternatively, this can be regarded
as an Ising model on a square lattice with a quasi-periodic distribution of up
to eight different coupling constants. The duality transformation on this
tiling is considered and the self-dual couplings are determined. Furthermore,
we analyze the subclass of exactly solvable models in detail parametrizing the
coupling constants in terms of four rapidity parameters. For those, the
self-dual couplings correspond to the critical points which, as expected,
belong to the Onsager universality class.Comment: 25 pages, 6 figure
Pure point diffraction and cut and project schemes for measures: The smooth case
We present cut and project formalism based on measures and continuous weight
functions of sufficiently fast decay. The emerging measures are strongly almost
periodic. The corresponding dynamical systems are compact groups and
homomorphic images of the underlying torus. In particular, they are strictly
ergodic with pure point spectrum and continuous eigenfunctions. Their
diffraction can be calculated explicitly. Our results cover and extend
corresponding earlier results on dense Dirac combs and continuous weight
functions with compact support. They also mark a clear difference in terms of
factor maps between the case of continuous and non-continuous weight functions.Comment: 30 page
Recurrence in 2D Inviscid Channel Flow
I will prove a recurrence theorem which says that any () solution
to the 2D inviscid channel flow returns repeatedly to an arbitrarily small
neighborhood. Periodic boundary condition is imposed along the
stream-wise direction. The result is an extension of an early result of the
author [Li, 09] on 2D Euler equation under periodic boundary conditions along
both directions
On the Entropy of a Family of Random Substitutions
The generalised random Fibonacci chain is a stochastic extension of the
classical Fibonacci substitution and is defined as the rule mapping and with probability , where with
, and where the random rule is applied each time it acts on
a 1. We show that the topological entropy of this object is given by the growth
rate of the set of inflated generalised random Fibonacci words.Comment: A more appropriate tile and minor misprints corrected, compared to
the previous versio
Multiple planar coincidences with N-fold symmetry
Planar coincidence site lattices and modules with N-fold symmetry are well
understood in a formulation based on cyclotomic fields, in particular for the
class number one case, where they appear as certain principal ideals in the
corresponding ring of integers. We extend this approach to multiple
coincidences, which apply to triple or multiple junctions. In particular, we
give explicit results for spectral, combinatorial and asymptotic properties in
terms of Dirichlet series generating functions.Comment: 13 pages, two figures. For previous related work see math.MG/0511147
and math.CO/0301021. Minor changes and references update
- …