287 research outputs found

    Symmetries and reversing symmetries of polynomial automorphisms of the plane

    Full text link
    The polynomial automorphisms of the affine plane over a field K form a group which has the structure of an amalgamated free product. This well-known algebraic structure can be used to determine some key results about the symmetry and reversing symmetry groups of a given polynomial automorphism.Comment: 27 pages, AMS-Late

    The structure of reversing symmetry groups

    Full text link
    We present some of the group theoretic properties of reversing symmetry groups, and classify their structure in simple cases that occur frequently in several well-known groups of dynamical systems.Comment: 12 page

    Weighted Dirac combs with pure point diffraction

    Full text link
    A class of translation bounded complex measures, which have the form of weighted Dirac combs, on locally compact Abelian groups is investigated. Given such a Dirac comb, we are interested in its diffraction spectrum which emerges as the Fourier transform of the autocorrelation measure. We present a sufficient set of conditions to ensure that the diffraction measure is a pure point measure. Simultaneously, we establish a natural link to the theory of the cut and project formalism and to the theory of almost periodic measures. Our conditions are general enough to cover the known theory of model sets, but also to include examples such as the visible lattice points.Comment: 44 pages; several corrections and improvement

    Symmetries and reversing symmetries of toral automorphisms

    Full text link
    Toral automorphisms, represented by unimodular integer matrices, are investigated with respect to their symmetries and reversing symmetries. We characterize the symmetry groups of GL(n,Z) matrices with simple spectrum through their connection with unit groups in orders of algebraic number fields. For the question of reversibility, we derive necessary conditions in terms of the characteristic polynomial and the polynomial invariants. We also briefly discuss extensions to (reversing) symmetries within affine transformations, to PGL(n,Z) matrices, and to the more general setting of integer matrices beyond the unimodular ones.Comment: 34 page

    Single-crossover dynamics: finite versus infinite populations

    Full text link
    Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarise and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the {\em expected} type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.Comment: 21 pages, 4 figure

    Diffractive point sets with entropy

    Full text link
    After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. We show that taking the site occupation of a model set stochastically results, with probabilistic certainty, in well-defined diffractive properties augmented by a constant diffuse background. We discuss both the case of independent, but identically distributed (i.i.d.) random variables and that of independent, but different (i.e., site dependent) random variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th birthday; final version, some minor addition

    Pure point diffraction and cut and project schemes for measures: The smooth case

    Full text link
    We present cut and project formalism based on measures and continuous weight functions of sufficiently fast decay. The emerging measures are strongly almost periodic. The corresponding dynamical systems are compact groups and homomorphic images of the underlying torus. In particular, they are strictly ergodic with pure point spectrum and continuous eigenfunctions. Their diffraction can be calculated explicitly. Our results cover and extend corresponding earlier results on dense Dirac combs and continuous weight functions with compact support. They also mark a clear difference in terms of factor maps between the case of continuous and non-continuous weight functions.Comment: 30 page

    Orbit structure and (reversing) symmetries of toral endomorphisms on rational lattices

    Get PDF
    We study various aspects of the dynamics induced by integer matrices on the invariant rational lattices of the torus in dimension 2 and greater. Firstly, we investigate the orbit structure when the toral endomorphism is not invertible on the lattice, characterising the pretails of eventually periodic orbits. Next we study the nature of the symmetries and reversing symmetries of toral automorphisms on a given lattice, which has particular relevance to (quantum) cat maps.Comment: 29 pages, 3 figure

    Periodic orbits of linear endomorphisms on the 2-torus and its lattices

    Full text link
    Counting periodic orbits of endomorphisms on the 2-torus is considered, with special focus on the relation between global and local aspects and between the dynamical zeta function on the torus and its analogue on finite lattices. The situation on the lattices, up to local conjugacy, is completely determined by the determinant, the trace and a third invariant of the matrix defining the toral endomorphism.Comment: 22 page
    • …
    corecore