6 research outputs found

    Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere

    No full text
    In this study, Cu2SnS3 (CTS) thin films prepared by a two-step sulfurization process were characterized. Cu and Sn metallic layers were first deposited on glass substrates by sputtering and then annealed in-situ while in the sputtering chamber to obtain CuSn (CT) alloys. This was followed by a pre-treatment step at temperatures between 200 and 350 degrees C in presence of S vapors. Finally, a full sulfurization step was performed at 525 degrees C to obtain the desired CTS phase. CTS films were characterized using EDX, XRD, Raman spectroscopy, SEM, optical transmission and Van der Pauw methods. It was found that all CTS samples had Cu-poor chemical composition. XRD data revealed only diffraction peaks belonging to CTS structure after the full sulfurization step. Raman spectra of the samples showed that except for the CTS sample pre-treated at 250 degrees C (CTS-250), which displayed the tetragonal crystal system, the films were dominated by the monoclinic structure. SEM surface images showed dense and polycrystalline microstructure, CTS-200 sample exhibiting a more uniform morphology. Optical band gap values were found to be ranging from 0.92 to 1.19 eV. All samples showed p-type conductivity but the sample pre-treated at 350 degrees C had higher resistivity and lower carrier concentration values. Overall, the CTS layer prepared using the pre-treatment step at 200 degrees C exhibited more promising structural and optical properties for potential photovoltaic applications. This work demonstrated that it is possible to change the crystal structure of sulfurized CTS thin films through a pre-treatment step

    Effect of ultra-thin CdSexTe1−x interface layer on parameters of CdTe solar cells

    No full text
    Effects of an ultra-thin CdSexTe1-x junction interface layer on CdTe solar cell parameters were investigated employing a CdSexTe1-x/CdTe absorber structure. CdSexTe1-x thin films with varying composition were grown by vacuum evaporation and CdTe films were produced by the close spaced sublimation (CSS) method. XRD analysis showed that while the CdSexTe1-x layers with x values less than 0.39 crystallized in cubic structure, films that were richer in Se displayed a (cubic + hexagonal) mixed phase. SEM analysis demonstrated a morphology with compact grains for all films. However, the grain size decreased appreciably with increasing Se content. Optical measurements showed that the band gaps of the alloys reached the minimum value of 1.40 eV at x ∼ 0.32. CdS/CdSexTe1-x/CdTe solar cells were fabricated employing 100 nm thick CdSexTe1-x interlayers. The Grazing Incidence (GI)-XRD spectra of CdSexTe1-x used in the device structure showed that these inter-layers had graded alloy composition. The average Se-concentration within the graded alloy films were found to agree with the values obtained by EDS. Conversion efficiencies of 9.59% 11.69% and 10.13%, were obtained for x values of 0.24, 0.32 and 0.39, respectively. Spectral response showed enhanced long wavelength response for all devices due to the presence of the CdSexTe1-x interlayer. It was concluded that using an ultra-thin CdSexTe1-x inter-layer with optimum properties between CdS (junction partner) and CdTe improves the cell performance by increasing the current density of the device

    Processing CdS- and CdSe-containing window layers for CdTe solar cells

    No full text
    The influence of heat treatment steps on the characteristics of (CdS, CdSe) junction partners and on solar cell performance was studied. CdS films were obtained by chemical bath deposition, and CdSe layers were evaporated. Structural and compositional properties of CdS/CdSe bilayer stacks did not change upon heat treatment at 400 degrees C up to 10 min, whereas heat treatment in the presence of CdCl2 for 10 min caused formation of a CdSSe alloy with a bandgap value of about 2.05 eV. Originally, the cubic structure of the stack was also transformed into a hexagonal structure during this treatment. CdSe-CdTe interdiffusion was also studied using CdS/CdSe/CdTe triple layer stacks. CdTe films were deposited using a close-spaced sublimation method. Limited CdSe-CdTe interdiffusion was seen when CdTe was deposited over the as-deposited CdSe layer at 580 degrees C. However, such interdiffusion was not detected for samples where CdTe deposition was carried out on CdS/CdSe stacks pre-annealed in the presence of CdCl2. This suggests that partial crystallization of the CdS/CdSe bilayer stack by CdCl2 reduced such an interaction. Solar cells with CdSe/CdTe, CdS/CdTe and CdS/CdSe/CdTe structures with efficiencies of 8.39%, 10.12% and 11.47% were fabricated using 4.5-5 mu m thick CdTe layers and a final CdCl2 treatment. Quantum efficiency measurements demonstrated the benefit of CdSe-CdTe alloying during the final CdCl2 treatment in improving the short circuit current values

    Deposition of CdSeTe alloys using CdTe-CdSe mixed powder source material in a close-space sublimation process

    No full text
    CdSexTe1-x films were deposited using a close-space sublimation (CSS) method and CdSe + CdTe mixed powders as the source material. Composition of the source was changed to obtain films with varying x values, and the resulting films were characterized by XRD, SEM, photoluminescence, Raman and optical transmission measurements. All data agreed with the fact that as the Se content of the source material was increased, the composition parameter x also increased. GI-XRD measurements showed the films to be graded in composition, the surface region being more Se-rich. Band gap values obtained from optical measurements showed a minimum band gap of about 1.4 eV for the material that had the highest Se content of about 45% near its top surface. Energy gap vs composition data demonstrated the expected bowing effect in band gap values and a bowing parameter of 0.678 was determined

    Effect of CdS and CdSe pre-treatment on interdiffusion with CdTe in CdS/CdTe and CdSe/CdTe heterostructures

    No full text
    High efficiency CdTe solar cell structure has the configuration of CdS/CdSe/CdTe. Depending on the deposition and post deposition techniques employed, this stack is often subjected to high temperatures, often in presence of CdCl2, which leads to various degrees of interdiffusion at the CdS/CdSe and CdSe/CdTe interfaces. Such interdiffusion greatly influences device performance. Therefore, understanding and controlling these interdiffusion processes are important. In this contribution, interdiffusion between CdS-CdTe and CdSe-CdTe pairs were studied using CdS/CdTe and CdSe/CdTe stacks annealed at 673 K. Effect of pre-treating the CdS and CdSe layers with CdCl2 before the CdTe deposition on this interdiffusion was investigated. CdS films were grown by CBD and CdSe and CdTe films were vacuum evaporated. CdTe thickness was intentionally kept at the low 150?200 nm range to more easily identify alloy phases formed. GA-XRD measurements demonstrated that in absence of any CdCl2 pretreatment, there was more interdiffusion between CdSe and CdTe compared to CdS and CdTe. In all cases CdCl2 pre-treatment of CdS or CdSe before the deposition of the CdTe film was found to reduce diffusion of S and Se into CdTe
    corecore