809 research outputs found

    What makes slow samples slow in the Sherrington-Kirkpatrick model

    Full text link
    Using results of a Monte Carlo simulation of the Sherrington-Kirkpatrick model, we try to characterize the slow disorder samples, namely we analyze visually the correlation between the relaxation time for a given disorder sample JJ with several observables of the system for the same disorder sample. For temperatures below TcT_c but not too low, fast samples (small relaxation times) are clearly correlated with a small value of the largest eigenvalue of the coupling matrix, a large value of the site averaged local field probability distribution at the origin, or a small value of the squared overlap .Withinourlimiteddata,thecorrelationremainsasthesystemsizeincreasesbutbecomeslessclearasthetemperatureisdecreased(thecorrelationwith. Within our limited data, the correlation remains as the system size increases but becomes less clear as the temperature is decreased (the correlation with is more robust) . There is a strong correlation between the values of the relaxation time for two distinct values of the temperature, but this correlation decreases as the system size is increased. This may indicate the onset of temperature chaos

    Presentación

    Get PDF

    Interconnection of port-Hamiltonian systems and composition of Dirac structures

    Get PDF
    Port-based network modeling of physical systems leads to a model class of nonlinear systems known as port-Hamiltonian systems. Port-Hamiltonian systems are defined with respect to a geometric structure on the state space, called a Dirac structure. Interconnection of port-Hamiltonian systems results in another port-Hamiltonian system with Dirac structure defined by the composition of the Dirac structures of the subsystems. In this paper the composition of Dirac structures is being studied, both in power variables and in wave variables (scattering) representation. This latter case is shown to correspond to the Redheffer star product of unitary mappings. An equational representation of the composed Dirac structure is derived. Furthermore, the regularity of the composition is being studied. Necessary and sufficient conditions are given for the achievability of a Dirac structure arising from the standard feedback interconnection of a plant port-Hamiltonian system and a controller port-Hamiltonian system, and an explicit description of the class of achievable Casimir functions is derived
    corecore