98 research outputs found

    Subtleties in the beta function calculation of N=1 supersymmetric gauge theories

    Full text link
    We investigate some peculiarities in the calculation of the two-loop beta-function of N=1N=1 supersymmetric models which are intimately related to the so-called "Anomaly Puzzle". There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, it is obtained a finite two-loop effective action, although a non-null coefficient for the beta-function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta-function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly.Comment: Few misprintings corrected and comments added. To meet the version to be published at European Physical Journal

    On the relation between the propagators of dual theories

    Full text link
    In this paper, we show that the propagator of the dual of a general Proca-like theory, derived from the gauging iterative Noether Dualization Method, can be written by means of a simple relation between known propagators. This result is also a demonstration that the Lagrangian obtained by dualization describes the same physical particles as the ones present in the original theory at the expense of introducing new non-physical (ghosts) excitations.Comment: latex, 4 page

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures

    The full Lorentz-violating vacuum polarization tensor: low and high energy limits

    Full text link
    We compute the full vacuum polarization tensor in the fermion sector of Lorentz-violating QED. Even if we assume momentum routing invariance of the Feynman diagrams, it is not possible to fix all surface terms and find an unambiguity free vacuum polarization tensor. The high and low energy limits of this tensor is presented. In the high energy limit, only cΌΜc_{\mu\nu} coeffcients contribute. In the low energy limit, we fnd that Lorentz-violating induced terms depend only on bΌb_{\mu}, cΌΜc_{\mu\nu} and gΌΜλg_{\mu\nu\lambda} coeffcients and they are suppressed by powers of p2m2\frac{p^{2}}{m^{2}}. This limit allows to obtain implications for condensed matter systems, explicitly, for the Hall effect in Weyl semimetals.Comment: 11 pages, 4 figure

    Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization

    Full text link
    Modifications of the electromagnetic Maxwell Lagrangian in four dimensions have been considered by some authors. One may include an explicit massive term (Proca) and a topological but not Lorentz-invariant term within certain observational limits. We find the dual-corresponding gauge invariant version of this theory by using the recently suggested gauge embedding method. We enforce this dualisation procedure by showing that, in many cases, this is actually a constructive method to find a sort of parent action, which manifestly establishes duality. We also use the gauge invariant version of this theory to formulate a Batalin-Vilkovisky quantization and present a detailed discussion on the excitation spectrum.Comment: 8 page
    • 

    corecore