120 research outputs found

    Can you trust clinical practice guidelines for laparoscopic surgery? A systematic review of clinical practice guidelines for laparoscopic surgery

    Get PDF
    BACKGROUND: Clinical practice guidelines aim to support clinicians in providing clinical care and should be supported by evidence. There is currently no information on whether clinical practice guidelines in laparoscopic surgery are supported by evidence. METHODS: We performed a systematic review and identified clinical practice guidelines of laparoscopic surgery published in PubMed and Embase between March 2016 and February 2019. We performed an independent assessment of the strength of recommendation based on the evidence provided by the guideline authors. We used the 'Appraisal of Guidelines for Research & Evaluation II' (AGREE-II) Tool's 'rigour of development', 'clarity of presentation', and 'editorial independence' domains to assess the quality of the guidelines. We performed a mixed-effects generalised linear regression modelling. RESULTS: We retrieved 63 guidelines containing 1905 guideline statements. The median proportion of 'difference in rating' of strength of recommendation between the guideline authors and independent assessment was 33.3% (quartiles: 18.3%, 55.8%). The 'rigour of development' domain score (odds ratio 0.06; 95% confidence intervals 0.01-0.48 per unit increase in rigour score; P value = 0.0071) and whether the strength of recommendation was 'strong' by independent evaluation (odds ratio 0.09 (95% confidence intervals 0.06-0.13; P value < 0.001) were the only determinants of difference in rating between the guideline authors and independent evaluation. CONCLUSION: A considerable proportion of guideline statements in clinical practice guidelines in laparoscopic surgery are not supported by evidence. Guideline authors systematically overrated the strength of the recommendation (i.e., even when the evidence points to weak recommendation, guideline authors made strong recommendations)

    Widespread Site-Dependent Buffering of Human Regulatory Polymorphism

    Get PDF
    The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF–binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein–DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human–chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of “perfect” genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements

    Improved Measurement of Electron Antineutrino Disappearance at Daya Bay

    Get PDF
    postprin
    corecore