19 research outputs found

    Association of current smoking with airway inflammation in chronic obstructive pulmonary disease and asymptomatic smokers

    Get PDF
    BACKGROUND: Inflammation in the airways and lung parenchyma underlies fixed airway obstruction in chronic obstructive pulmonary disease. The exact role of smoking as promoting factor of inflammation in chronic obstructive pulmonary disease is not clear, partly because studies often do not distinguish between current and ex-smokers. METHODS: We investigated airway inflammation in sputum and bronchial biopsies of 34 smokers with chronic obstructive pulmonary disease (9 Global initiative for Chronic Obstructive Lung Disease stage 0, 9 stage I, 10 stage II and 6 stage III) and 26 asymptomatic smokers, and its relationship with past and present smoking habits and airway obstruction. RESULTS: Neutrophil percentage, interleukin-8 and eosinophilic-cationic-protein levels in sputum were higher in chronic obstructive pulmonary disease (stage I-III) than asymptomatic smokers. Inflammatory cell numbers in bronchial biopsies were similar in both groups. Current smoking correlated positively with macrophages: in bronchial biopsies in both groups, and in sputum in chronic obstructive pulmonary disease. Pack-years smoking correlated positively with biopsy macrophages only in chronic obstructive pulmonary disease. CONCLUSION: Inflammatory effects of current smoking may mask the underlying ongoing inflammatory process pertinent to chronic obstructive pulmonary disease. This may have implications for future studies, which should avoid including mixed populations of smokers and ex-smokers

    Acute effects of cigarette smoking on inflammation in healthy intermittent smokers

    Get PDF
    BACKGROUND: Chronic smoking is the main risk factor for chronic obstructive pulmonary disease. Knowledge on the response to the initial smoke exposures might enhance the understanding of changes due to chronic smoking, since repetitive acute smoke effects may cumulate and lead to irreversible lung damage. METHODS: We investigated acute effects of smoking on inflammation in 16 healthy intermittent smokers in an open randomised cross-over study. We compared effects of smoking of two cigarettes on inflammatory markers in exhaled air, induced sputum, blood and urine at 0, 1, 3, 6, 12, 24, 48, 96 and 192 hours and outcomes without smoking. All sputum and blood parameters were log transformed and analysed using a linear mixed effect model. RESULTS: Significant findings were: Smoking increased exhaled carbon monoxide between 0 and 1 hour, and induced a greater decrease in blood eosinophils and sputum lymphocytes between 0 and 3 hours compared to non-smoking. Compared to non-smoking, smoking induced a greater interleukin-8 release from stimulated blood cells between 0 and 3 hours, and a greater increase in sputum lymphocytes and neutrophils between 3 and 12 hours. CONCLUSION: We conclude that besides an increase in inflammation, as known from chronic smoking, there is also a suppressive effect of smoking two cigarettes on particular inflammatory parameters

    Vascular endothelial growth factor: an angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with bronchitis type of chronic obstructive pulmonary disease (COPD) have raised vascular endothelial growth factor (VEGF) levels in induced sputum. This has been associated with the pathogenesis of COPD through apoptotic and oxidative stress mechanisms. Since, chronic airway inflammation is an important pathological feature of COPD mainly initiated by cigarette smoking, aim of this study was to assess smoking as a potential cause of raised airway VEGF levels in bronchitis type COPD and to test the association between VEGF levels in induced sputum and airway inflammation in these patients.</p> <p>Methods</p> <p>14 current smokers with bronchitis type COPD, 17 asymptomatic current smokers with normal spirometry and 16 non-smokers were included in the study. VEGF, IL-8, and TNF-α levels in induced sputum were measured and the correlations between these markers, as well as between VEGF levels and pulmonary function were assessed.</p> <p>Results</p> <p>The median concentrations of VEGF, IL-8, and TNF-α were significantly higher in induced sputum of COPD patients (1,070 pg/ml, 5.6 ng/ml and 50 pg/ml, respectively) compared to nonsmokers (260 pg/ml, 0.73 ng/ml, and 15.4 pg/ml, respectively, p < 0.05) and asymptomatic smokers (421 pg/ml, 1.27 ng/ml, p < 0.05, and 18.6 pg/ml, p > 0.05, respectively). Significant correlations were found between VEGF levels and pack years (r = 0.56, p = 0.046), IL-8 (r = 0.64, p = 0.026) and TNF-α (r = 0.62, p = 0.031) levels both in asymptomatic and COPD smokers (r = 0.66, p = 0.027, r = 0.67, p = 0.023, and r = 0.82, p = 0.002, respectively). No correlation was found between VEGF levels in sputum and pulmonary function parameters.</p> <p>Conclusion</p> <p>VEGF levels are raised in the airways of both asymptomatic and COPD smokers. The close correlation observed between VEGF levels in the airways and markers of airway inflammation in healthy smokers and in smokers with bronchitis type of COPD is suggestive of VEGF as a marker reflecting the inflammatory process that occurs in smoking subjects without alveolar destruction.</p

    Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.</p> <p>Methods</p> <p>114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV<sub>1 </sub>63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163<sup>+ </sup>macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.</p> <p>Results</p> <p>Ex-smokers with COPD had a higher percentage, but lower number of CD163<sup>+ </sup>macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×10<sup>4</sup>/ml, p = 0.001 respectively). The percentage CD163<sup>+ </sup>M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163<sup>+ </sup>BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.</p> <p>Conclusions</p> <p>Our data suggest that smoking cessation partially changes the macrophage polarization <it>in vivo </it>in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.</p

    Systematic review of the evidence relating FEV1 decline to giving up smoking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of forced expiratory volume in 1 second (FEV<sub>1</sub>) decline ("beta") is a marker of chronic obstructive pulmonary disease risk. The reduction in beta after quitting smoking is an upper limit for the reduction achievable from switching to novel nicotine delivery products. We review available evidence to estimate this reduction and quantify the relationship of smoking to beta.</p> <p>Methods</p> <p>Studies were identified, in healthy individuals or patients with respiratory disease, that provided data on beta over at least 2 years of follow-up, separately for those who gave up smoking and other smoking groups. Publications to June 2010 were considered. Independent beta estimates were derived for four main smoking groups: never smokers, ex-smokers (before baseline), quitters (during follow-up) and continuing smokers. Unweighted and inverse variance-weighted regression analyses compared betas in the smoking groups, and in continuing smokers by amount smoked, and estimated whether beta or beta differences between smoking groups varied by age, sex and other factors.</p> <p>Results</p> <p>Forty-seven studies had relevant data, 28 for both sexes and 19 for males. Sixteen studies started before 1970. Mean follow-up was 11 years. On the basis of weighted analysis of 303 betas for the four smoking groups, never smokers had a beta 10.8 mL/yr (95% confidence interval (CI), 8.9 to 12.8) less than continuing smokers. Betas for ex-smokers were 12.4 mL/yr (95% CI, 10.1 to 14.7) less than for continuing smokers, and for quitters, 8.5 mL/yr (95% CI, 5.6 to 11.4) less. These betas were similar to that for never smokers. In continuing smokers, beta increased 0.33 mL/yr per cigarette/day. Beta differences between continuing smokers and those who gave up were greater in patients with respiratory disease or with reduced baseline lung function, but were not clearly related to age or sex.</p> <p>Conclusion</p> <p>The available data have numerous limitations, but clearly show that continuing smokers have a beta that is dose-related and over 10 mL/yr greater than in never smokers, ex-smokers or quitters. The greater decline in those with respiratory disease or reduced lung function is consistent with some smokers having a more rapid rate of FEV<sub>1 </sub>decline. These results help in designing studies comparing continuing smokers of conventional cigarettes and switchers to novel products.</p

    The impact of smoking cessation on respiratory symptoms, lung function, airway hyperresponsiveness and inflammation

    No full text
    Smoking is the main risk factor in the development of chronic obstructive pulmonary disease (COPD), and smoking cessation is the only effective treatment for avoiding or reducing the progression of this disease. Despite the fact that smoking cessation is a very important health issue, information about the underlying mechanisms of the effects of smoking cessation on the lungs is surprisingly scarce. It is likely that the reversibility of smoke-induced changes differs between smokers without chronic symptoms, smokers with nonobstructive chronic bronchitis and smokers with COPD. This review describes how these three groups differ regarding the effects of smoking cessation on respiratory symptoms, lung function (forced expiratory volume in one second), airway hypperresponsiveness, and pathological and inflammatory changes in the lung. Smoking cessation clearly improves respiratory symptoms and bronchial hyperresponsiveness, and prevents excessive decline in lung function in all three groups. Data from well-designed studies are lacking regarding the effects on inflammation and remodelling, and the few available studies show contradictory results. In chronic obstructive pulmonary disease, a few histopathological studies suggest that airway inflammation persists in exsmokers. Nevertheless, many studies have shown that smoking cessation improves the accelerated decline in forced expiratory volume in one second, which strongly indicates that important inflammatory and/or remodelling processes are positively affected
    corecore