14 research outputs found

    Palynology of Triassic–Jurassic boundary sections in northern Switzerland

    Full text link
    A first palynostratigraphic scheme of Upper Triassic deposits in northern Switzerland was established based on spore-pollen associations and dinoflagellate cyst records from the upper part of the Upper Triassic Klettgau Formation and the lower part of the Lower Jurassic Staffelegg Formation. Drill cores from the Adlerberg region (Basel Tabular Jura) and from Weiach (northern part of Canton Zurich) as well as from an outcrop at the Chilchzimmersattel (Basel Folded Jura) were studied and five informal palynological associations are distinguished. These palynological associations correlate with palynological association of the Central European Epicontinental Basin and the Tethyan realm and provide a stratigraphic framework for the uppermost Triassic sediments in northern Switzerland. Throughout the uppermost Triassic to Jurassic palynological succession a remarkable prominence of Classopollis spp. is observed. Besides Classopollis spp. the three Rhaetian palynological associations A to C from the Upper Triassic Belchen Member include typical Rhaetian spore-pollen and dinoflagellate taxa (e.g., Rhaetipollis germanicus, Geopollis zwolinskae, Rhaetogonyaulax rhaetica, and Dapcodinium priscum). Association B differs from association A in a higher relative abundance of the sporomorph taxa Perinopollenites spp. and the consistent occurrence of Granuloperculatipollis rudis and Ricciisporites tuberculatus. Spore diversity is highest in the late Rhaetian palynological association C and includes Polypodiisporites polymicroforatus. A Rhaetian age for the Belchen Member is confirmed by palynological associations A–C, but there is no record of the latest Rhaetian and the earliest Jurassic. In contrast to the Rhaetian palynological associations the Early Jurassic associations W and D include Pinuspollenites spp., Trachysporites fuscus (in association W), and Ischyosporites variegatus. In the view of the end-Triassic mass extinction and contemporaneous environmental changes the described palynofloral succession represents the pre-extinction phase (associations A and B) including a distinct transgression, the extinction phase (association C) associated with a regression, and the post-extinction phase (association W)

    Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology

    No full text
    With its ability to observe, manipulate and explore the functional components of the biological cell at subnanometre resolution, atomic force microscopy (AFM) has produced a wealth of new opportunities in nanobiotechnology. Evolving from an imaging technique to a multifunctional 'lab-on-a-tip', AFM-based force spectroscopy is increasingly used to study the mechanisms of molecular recognition and protein folding, and to probe the local elasticity, chemical groups and dynamics of receptor-ligand interactions in live cells. AFM cantilever arrays allow the detection of bioanalytes with picomolar sensitivity, opening new avenues for medical diagnostics and environmental monitoring. Here we review the fascinating opportunities offered by the rapid advances in AFM
    corecore