204 research outputs found
Locality in Theory Space
Locality is a guiding principle for constructing realistic quantum field
theories. Compactified theories offer an interesting context in which to think
about locality, since interactions can be nonlocal in the compact directions
while still being local in the extended ones. In this paper, we study locality
in "theory space", four-dimensional Lagrangians which are dimensional
deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV)
completions, one can understand the origin of theory space locality by the
irrelevance of nonlocal operators. From an infrared (IR) point of view, though,
theory space locality does not appear to be a special property, since the
lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear
sigma model, and locality imposes seemingly arbitrary constraints on the KK
spectrum and interactions. We argue that these constraints are nevertheless
important from an IR perspective, since they affect the four-dimensional cutoff
of the theory where high energy scattering hits strong coupling. Intriguingly,
we find that maximizing this cutoff scale implies five-dimensional locality. In
this way, theory space locality is correlated with weak coupling in the IR,
independent of UV considerations. We briefly comment on other scenarios where
maximizing the cutoff scale yields interesting physics, including theory space
descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3:
version accepted by JHE
Clergy work-related satisfactions in parochial ministry: the influence of personality and churchmanship
The aim of this study was to test several hypotheses that clergy work-related satisfaction could be better explained by a multidimensional rather than a unidimensional model. A sample of 1071 male stipendiary parochial clergy in the Church of England completed the Clergy Role Inventory, together with the short-form Revised Eysenck Personality Questionnaire. Factor analysis of the Clergy Role Inventory identified five separate clergy roles: Religious Instruction, Administration, Statutory Duties (conducting marriages and funerals), Pastoral Care, and Role Extension (including extra-parochial activities). Respondents also provided an indication of their predispositions on the catholic-evangelical and liberal-conservative dimensions. The significant associations of the satisfactions derived from each of the roles with the demographic, personality, and churchmanship variables were numerous, varied, and, with few exceptions, small in magnitude. Separate hierarchical regressions for each of the five roles indicated that the proportion of total variance explained by churchmanship was, in general, at least as great as that explained by personality, and was greater for three roles: Religious Instruction, Statutory Duties, and Role Extension. It was concluded that clergy satisfactions derived from different roles are not uniform and that churchmanship is at least as important as personality in accounting for clergy work satisfaction
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
Rigid Supersymmetric Theories in Curved Superspace
We present a uniform treatment of rigid supersymmetric field theories in a
curved spacetime , focusing on four-dimensional theories with four
supercharges. Our discussion is significantly simpler than earlier treatments,
because we use classical background values of the auxiliary fields in the
supergravity multiplet. We demonstrate our procedure using several examples.
For we reproduce the known results in the literature. A
supersymmetric Lagrangian for exists, but unless the
field theory is conformal, it is not reflection positive. We derive the
Lagrangian for and note that the
time direction can be rotated to Euclidean signature and be
compactified to only when the theory has a continuous R-symmetry. The
partition function on is independent of
the parameters of the flat space theory and depends holomorphically on some
complex background gauge fields. We also consider R-invariant
theories on and clarify a few points about them.Comment: 26 pages, uses harvmac; v2 with added reference
Composite Higgs Sketch
The coupling of a composite Higgs to the standard model fields can deviate
substantially from the standard model values. In this case perturbative
unitarity might break down before the scale of compositeness is reached, which
would suggest that additional composites should lie well below this scale. In
this paper we account for the presence of an additional spin 1 custodial
triplet of rhos. We examine the implications of requiring perturbative
unitarity up to the compositeness scale and find that one has to be close to
saturating certain unitarity sum rules involving the Higgs and the rho
couplings. Given these restrictions on the parameter space we investigate the
main phenomenological consequences of the spin 1 triplet. We find that they can
substantially enhance the Higgs di-photon rate at the LHC even with a reduced
Higgs coupling to gauge bosons. The main existing LHC bounds arise from
di-boson searches, especially in the experimentally clean channel where the
charged rhos decay to a W-boson and a Z, which then decay leptonically. We find
that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV
is currently experimentally viable.Comment: 37 pages, 12 figures; v4: sum rule corrected, conclusions unchange
Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons
In many strongly-interacting models of electroweak symmetry breaking the
lowest-lying observable particle is a pseudo-Goldstone boson of approximate
scale symmetry, the pseudo-dilaton. Its interactions with Standard Model
particles can be described using a low-energy effective nonlinear chiral
Lagrangian supplemented by terms that restore approximate scale symmetry,
yielding couplings of the pseudo-dilaton that differ from those of a Standard
Model Higgs boson by fixed factors. We review the experimental constraints on
such a pseudo-dilaton in light of new data from the LHC and elsewhere. The
effective nonlinear chiral Lagrangian has Skyrmion solutions that may be
identified with the `electroweak baryons' of the underlying
strongly-interacting theory, whose nature may be revealed by the properties of
the Skyrmions. We discuss the finite-temperature electroweak phase transition
in the low-energy effective theory, finding that the possibility of a
first-order electroweak phase transition is resurrected. We discuss the
evolution of the Universe during this transition and derive an
order-of-magnitude lower limit on the abundance of electroweak baryons in the
absence of a cosmological asymmetry, which suggests that such an asymmetry
would be necessary if the electroweak baryons are to provide the cosmological
density of dark matter. We revisit estimates of the corresponding
spin-independent dark matter scattering cross section, with a view to direct
detection experiments.Comment: 34 pages, 4 figures, additional references adde
Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking
We revisit the electroweak precision tests for Higgsless models of strong
EWSB. We use the Vector Meson Dominance approach and express S and T via
couplings characterizing vector and axial spin-1 resonances of the strong
sector. These couplings are constrained by the elastic unitarity and by
requiring a good UV behavior of various formfactors. We pay particular
attention to the one-loop contribution of resonances to T (beyond the chiral
log), and to how it can improve the fit. We also make contact with the recent
studies of Conformal Technicolor. We explain why the second Weinberg sum rule
never converges in these models, and formulate a condition necessary for
preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE
Heavy-light decay topologies as a new strategy to discover a heavy gluon
We study the collider phenomenology of the lightest Kaluza-Klein excitation
of the gluon, G*, in theories with a warped extra dimension. We do so by means
of a two-site effective lagrangian which includes only the lowest-lying spin-1
and spin-1/2 resonances. We point out the importance of the decays of G* to one
SM plus one heavy fermion, that were overlooked in the previous literature. It
turns out that, when kinematically allowed, such heavy-light decays are
powerful channels for discovering the G*. In particular, we present a
parton-level Montecarlo analysis of the final state Wtb that follows from the
decay of G* to one SM top or bottom quark plus its heavy partner. We find that
at \sqrt{s} = 7 TeV and with 10 fb^{-1} of integrated luminosity, the LHC can
discover a KK gluon with mass in the range M_{G*} = (1.8 - 2.2) TeV if its
coupling to a pair of light quarks is g_{G*qqbar} = (0.2-0.5) g_3. The same
process is also competitive for the discovery of the top and bottom partners as
well. We find, for example, that the LHC at \sqrt{s} = 7 TeV can discover a 1
TeV KK bottom quark with an integrated luminosity of (5.3 - 0.61) fb^{-1} for
g_{G*qqbar} = (0.2-0.5) g_3.Comment: 36 pages, 13 figures. v2: a few typos corrected, comments added,
version published in JHE
Living in the Past: Phylogeography and Population Histories of Indo-Pacific Wrasses (Genus Halichoeres) in Shallow Lagoons versus Outer Reef Slopes
Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles
- …