39 research outputs found

    The Blood Pressure "Uncertainty Range" – a pragmatic approach to overcome current diagnostic uncertainties (II)

    Get PDF
    A tremendous amount of scientific evidence regarding the physiology and physiopathology of high blood pressure combined with a sophisticated therapeutic arsenal is at the disposal of the medical community to counteract the overall public health burden of hypertension. Ample evidence has also been gathered from a multitude of large-scale randomized trials indicating the beneficial effects of current treatment strategies in terms of reduced hypertension-related morbidity and mortality. In spite of these impressive advances and, deeply disappointingly from a public health perspective, the real picture of hypertension management is overshadowed by widespread diagnostic inaccuracies (underdiagnosis, overdiagnosis) as well as by treatment failures generated by undertreatment, overtreatment, and misuse of medications. The scientific, medical and patient communities as well as decision-makers worldwide are striving for greatest possible health gains from available resources. A seemingly well-crystallised reasoning is that comprehensive strategic approaches must not only target hypertension as a pathological entity, but rather, take into account the wider environment in which hypertension is a major risk factor for cardiovascular disease carrying a great deal of our inheritance, and its interplay in the constellation of other, well-known, modifiable risk factors, i.e., attention is to be switched from one's "blood pressure level" to one's absolute cardiovascular risk and its determinants. Likewise, a risk/benefit assessment in each individual case is required in order to achieve best possible results. Nevertheless, it is of paramount importance to insure generalizability of ABPM use in clinical practice with the aim of improving the accuracy of a first diagnosis for both individual treatment and clinical research purposes. Widespread adoption of the method requires quick adjustment of current guidelines, development of appropriate technology infrastructure and training of staff (i.e., education, decision support, and information systems for practitioners and patients). Progress can be achieved in a few years, or in the next 25 years

    Challenges in Using Cultured Primary Rodent Hepatocytes or Cell Lines to Study Hepatic HDL Receptor SR-BI Regulation by Its Cytoplasmic Adaptor PDZK1

    Get PDF
    Background: PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms. Methodology/Principal Findings: Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo. Conclusions/Significance: Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.National Institutes of Health (U.S.) (Grant HL052212)National Institutes of Health (U.S.) (Grant HL066105)National Institutes of Health (U.S.) (Grant ES015241)National Institutes of Health (U.S.) (Grant GM068762

    Impact of menopause and diabetes on atherogenic lipid profile: is it worth to analyse lipoprotein subfractions to assess cardiovascular risk in women?

    Full text link
    corecore