116 research outputs found

    Cavity Induced Interfacing of Atoms and Light

    Full text link
    This chapter introduces cavity-based light-matter quantum interfaces, with a single atom or ion in strong coupling to a high-finesse optical cavity. We discuss the deterministic generation of indistinguishable single photons from these systems; the atom-photon entanglement intractably linked to this process; and the information encoding using spatio-temporal modes within these photons. Furthermore, we show how to establish a time-reversal of the aforementioned emission process to use a coupled atom-cavity system as a quantum memory. Along the line, we also discuss the performance and characterisation of cavity photons in elementary linear-optics arrangements with single beam splitters for quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems

    Get PDF
    Rodent models of focal cerebral ischemia are essential tools in experimental stroke research. They have added tremendously to our understanding of injury mechanisms in stroke and have helped to identify potential therapeutic targets. A plethora of substances, however, in particular an overwhelming number of putative neuroprotective agents, have been shown to be effective in preclinical stroke research, but have failed in clinical trials. A lot of factors may have contributed to this failure of translation from bench to bedside. Often, deficits in the quality of experimental stroke research seem to be involved. In this article, we review the commonest rodent models of focal cerebral ischemia - middle cerebral artery occlusion, photothrombosis, and embolic stroke models - with their respective advantages and problems, and we address the issue of quality in preclinical stroke modeling as well as potential reasons for translational failure

    Surfing the spectrum - what is on the horizon?

    Get PDF
    Diagnostic imaging techniques have evolved with technological advancements - but how far? The objective of this article was to explore the electromagnetic spectrum to find imaging techniques which may deliver diagnostic information of equal, or improved, standing to conventional radiographs and to explore any developments within radiography which may yield improved diagnostic data. A comprehensive literature search was performed using Medline, Web of Knowledge, Science Direct and PubMed Databases. Boolean Operators were used and key-terms included (not exclusively): terahertz, X-ray, ultraviolet, visible, infra-red, magnetic resonance, dental, diagnostic, caries and periodontal. Radiographic techniques are primarily used for diagnostic imaging in dentistry, and continued developments in X-ray imaging include: phase contrast, darkfield and spectral imaging. Other modalities have potential application, for example, terahertz, laser doppler and optical techniques, but require further development. In particular, infra-red imaging has regenerated interest with caries detection in vitro, due to improved quality and accessibility of cameras. Non-ionising imaging techniques, for example, infra-red, are becoming more commensurate with traditional radiographic techniques for caries detection. Nevertheless, X-rays continue to be the leading diagnostic image for dentists, with improved diagnostic potential for lower radiation dose becoming a reality

    Maternal smoking during pregnancy and birth defects in children: a systematic review with meta-analysis

    Full text link

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link
    corecore