1,788 research outputs found

    Multimodal Comprehension in Left Hemisphere Stroke Patients

    Get PDF
    Hand gestures, imagistically related to the content of speech, are ubiquitous in face-to-face communication. Here we investigated people with aphasia’s (PWA) processing of speech accompanied by gestures using lesion-symptom mapping. Twenty-nine PWA and 15 matched controls were shown a picture of an object/action and then a video-clip of a speaker producing speech and/or gestures in one of the following combinations: speech-only, gesture-only, congruent speech-gesture, and incongruent speech-gesture. Participants’ task was to indicate, in different blocks, whether the picture and the word matched (speech task), or whether the picture and the gesture matched (gesture task). Multivariate lesion analysis with Support Vector Regression Lesion-Symptom Mapping (SVR-LSM) showed that benefit for congruent speech-gesture was associated with 1) lesioned voxels in anterior fronto-temporal regions including inferior frontal gyrus (IFG), and sparing of posterior temporal cortex and lateral temporal-occipital regions (pTC/LTO) for the speech task, and 2) conversely, lesions to pTC/LTO and sparing of anterior regions for the gesture task. The two tasks did not share overlapping voxels. Costs from incongruent speech-gesture pairings were associated with lesioned voxels in these same anterior (for the speech task) and posterior (for the gesture task) regions, but crucially, also shared voxels in superior temporal gyri (STG) and middle temporal gyri (MTG), including the anterior temporal lobe. These results suggest that IFG and pTC/LTO contribute to extracting semantic information from speech and gesture, respectively; however, they are not causally involved in integrating information from the two modalities. In contrast, regions in anterior STG/MTG are associated with performance in both tasks and may thus be critical to speech-gesture integration. These conclusions are further supported by associations between performance in the experimental tasks and performance in tests assessing lexical-semantic processing and gesture recognition

    The prevalence and distribution of the amyloidogenic transthyretin (TTR) V122I allele in Africa

    Get PDF
    Transthyretin (TTR) pV142I (rs76992529-A) is one of the 113 variants in the human TTR gene associated with systemic amyloidosis. It results from a G to A transition at a CG dinucleotide in the codon for amino acid 122 of the mature protein (TTR V122I). The allele frequency is 0.0173 in African Americans

    Lack of class I H-2 antigens in cells transformed by radiation leukemia virus is associated with methylation and rearrangement of H-2 DNA

    Get PDF
    Transformation of murine thymocytes by radiation leukemia virus is associated with reduced expression of the class I antigens encoded in the major histocompatibility complex (MHC) and increased methylation and altered restriction enzyme patterns of MHC DNA. These changes may play a role in host susceptibility to virus-induced leukemogenesis and accord with the notion that viral genomes play a regulatory function when they integrate adjacent to histocompatibiity genes

    CA 125 regression after two completed cycles of chemotherapy: lack of prediction for long-term survival in patients with advanced ovarian cancer

    Get PDF
    The prognostic influence of CA 125 regression between the time point before surgery and after two completed courses of chemotherapy was studied in 210 patients with advanced ovarian cancer, and was compared to other well established prognostic factors. CA 125 blood samples were collected preoperatively (CA 125 pre) and 3 months after surgery (CA 125 3 mo) (at the beginning of the 3rd cycle of chemotherapy). The parameter CA 125 regression defined as log10 (CA 125 3 mo/CA 125 pre) was used for statistical analysis. In a survival analysis using a Cox proportional hazards model, CA 125 regression (P = 0.0001), residual tumour (P = 0.0001), age (P = 0.0095) and grading (P = 0.044) were independent variables, whereas stage of disease, histology, ascites and type of surgery failed to retain significance. Using log10 (CA 125 3 mo/CA 125 pre) as simple covariate in a Cox model showed a hazard ratio of 1.70 (95% confidence interval 1.32–2.19, P = 0.0001). However, a detailed analysis of the interaction of time with the prognostic factor CA 125 regression on survival revealed a strong time-dependent effect with a hazard ratio of more than 6 immediately after two courses of chemotherapy, whereas within approximately 1 year the hazard ratio for the surviving patients dropped quickly to the neutral level of 1. In summary, CA 125 regression is an independent prognostic factor for survival of women with advanced ovarian cancer and allows an identification of a high-risk population among patients with advanced ovarian cancer. However, the discriminating power of serial CA 125 for long-term survival seems to be temporary and prediction of individual patients outcome is far less precise. © 1999 Cancer Research Campaig

    Spatially Distributed Tactile Feedback for Kinesthetic Motion Guidance

    Get PDF
    Apraxic stroke patients need to perform repetitive arm movements to regain motor functionality, but they struggle to process the visual feedback provided by typical virtual rehabilitation systems. Instead, we imagine a low cost sleeve that can measure the movement of the upper limb and provide tactile feedback at key locations. The feedback provided by the tactors should guide the patient through a series of desired movements by allowing him or her to feel limb configuration errors at each instant in time. After discussing the relevant motion capture and actuator options, this paper describes the design and programming of our current prototype, a wearable tactile interface that uses magnetic motion tracking and shaftless eccentric mass motors. The sensors and actuators are attached to the sleeve of an athletic shirt with novel plastic caps, which also help focus the vibration on the user\u27s skin. We connect the motors in current drive for improved performance, and we present a full parametric model for their in situ dynamic response (acceleration output given current input)

    Transcriptomic changes in the frontal cortex associated with paternal age

    Get PDF
    Advanced paternal age is robustly associated with several human neuropsychiatric disorders, particularly autism. The precise mechanism(s) mediating the paternal age effect are not known, but they are thought to involve the accumulation of de novo (epi)genomic alterations. In this study we investigate differences in the frontal cortex transcriptome in a mouse model of advanced paternal age

    A continuous isotropic-nematic liquid crystalline transition of F-actin solutions

    Full text link
    The phase transition from the isotropic (I) to nematic (N) liquid crystalline suspension of F-actin of average length 3 μ3~\mum or above was studied by local measurements of optical birefringence and protein concentration. Both parameters were detected to be continuous in the transition region, suggesting that the I-N transition is higher than 1st order. This finding is consistent with a recent theory by Lammert, Rokhsar & Toner (PRL, 1993, 70:1650), predicting that the I-N transition may become continuous due to suppression of disclinations. Indeed, few line defects occur in the aligned phase of F-actin. Individual filaments in solutions of a few mg/ml F-actin undergo fast translational diffusion along the filament axis, whereas both lateral and rotational diffusions are suppressed.Comment: 4 pages with 4 figures. Submitted to Physical Review Letter

    Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD) in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example <it>Fmr1 </it>knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models.</p> <p>Methods</p> <p>To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes.</p> <p>Findings</p> <p>We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1) Changes in brain and neuronal morphology; (2) electrophysiological changes; (3) neurological changes; and (4) higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms.</p> <p>Conclusions</p> <p>The results indicated that mutations in ASD genes result in defined groups of changes in mouse models and support a broad neurobiological approach to phenotyping rodent models for ASD, with a focus on biochemistry and molecular biology, brain and neuronal morphology, and electrophysiology, as well as both neurological and additional behavioral analyses. Analysis of human phenotypes associated with these genes reinforced these conclusions, supporting face validity for these approaches to phenotyping of ASD models. Such phenotyping is consistent with the successes in <it>Fmr1 </it>knockout mice, in which morphological changes recapitulated human findings and electrophysiological deficits resulted in molecular insights that have since led to clinical trials. We propose both broad domains and, based on expert review of more than 50 publications in each of the four neurobiological domains, specific tests to be applied to rodent models of ASD.</p

    Lessons in Using Vibrotactile Feedback to Guide Fast Arm Motions

    Get PDF
    We present and evaluate an arm-motion guidance system that uses magnetic tracking sensors and low cost vibrotactile actuators. The system measures the movement of the user’s arm and provides vibration feedback at the wrist and elbow when they stray from the desired motion. An initial study was conducted to investigate whether adding tactile feedback to visual feedback reduces motion errors when a user is learning a new arm trajectory. Although subjects preferred it, we found that the addition of tactile feedback did not affect motion tracking performance. We also found no strong preference or performance differences between attractive and repulsive tactile feedback. Some factors that may have influenced these results include the speed and the complexity of the tested motions, the type of tactile actuators and drive signals used, and inconsistencies in joint angle estimation due to Euler angle gimbal lock. We discuss insights from this analysis and provide suggestions for future systems and studies in tactile motion guidance
    • …
    corecore