337 research outputs found

    Free surface oxygen transfer in large aspect ratio unbaffled bio-reactors, with or without draft-tube

    Get PDF
    It is widely accepted that animal cell damage in aerated bioreactors is mainly related to the bursting of bubbles at the air-liquid interface. A viable alternative to sparged bioreactors may be represented by uncovered unbaffled stirred tanks, which have been recently found to be able to provide sufficient mass transfer through the deep free surface vortex which takes place under agitation conditions. As a matter of fact, if the vortex is not allowed to reach impeller blades, no bubble formation and subsequent bursting at the free-surface, along with relevant cells damage, occurs.In this work oxygen transfer performance of large aspect ratio unbaffled stirred bioreactors, either equipped or not with an internal draft tube, is presented, in view of their use as biochemical reactors especially suited for shear sensitive cell cultivation

    Gas-Fluidization Characteristics of Binary Mixtures of Particles in 2D Geometry

    Get PDF
    The bubbling behaviour of fluidized beds has been thoroughly investigated in the last decades by means of several techniques, e.g. X-ray, Inductance, Resistance and Impedance based techniques, PIV. In recent years, Digital Image Analysis Techniques have shown their potential for accurate and cost effectively measurements. Most of the work related to bubble behaviour analysis deals with Single-sized particles, while almost all industrial equipment operates with multi-sized particles. Although considerable work has been done in the past with focus on the analysis of the mixing-segregation behaviour and predictions of fluid dynamics regime transitions, a lack of knowledge still exists in the analysis of bubbles properties measurements for the case of polydispersed systems. In this work, digital image analysis has been adopted to accurately measure fundamental global parameters such as bubble hold up and bed expansion as well as average bubble hold-up distribution maps or bubble size distributions in bubbling fluidized beds of binary mixtures of particles. The experiments have been carried out at steady state conditions with binary mixtures of corundum particles, at various inlet gas velocities. This preliminary study has been performed with the aim to collect valuable data for future development of predictive models and validation of CFD codes

    Mass transfer and hydrodynamic characteristics of a Long Draft Tube Self-ingesting Reactor (LDTSR) for gas-liquid-solid operations

    Get PDF
    Gas-liquid stirred vessels are widely employed to carry out chemical reactions involving a gas reagent and a liquid phase. The usual way for introducing the gas stream into the liquid phase is through suitable distributors placed below the impeller. An interesting alternative is that of using “self ingesting” vessels where the headspace gas phase is injected and dispersed into the vessel through suitable surface vortices. In this work the performance of a Long Draft Tube Self-ingesting Reactor dealing with gas-liquid-solid systems, is investigated. Preliminary experimental results on the effectiveness of this contactor for particle suspension and gas-liquid mass transfer performance in presence of solid particles are presented. It is found that the presence of low particle fractions causes a significant increase in the minimum speed required for vortex ingestion of the gas. Impeller pumping capacity and gas-liquid mass transfer coefficient are found to be affected by the presence of solid particles, though to a lesser extent than with other self-ingesting devices

    Local gas-liquid hold-up and interfacial area via light sheet and image analysis

    Get PDF
    Particle Image Velocimetry techniques coupled with advanced Image Processing tools are receiving an increasing interest for measuring flow quantities and local bubble-size distributions in gas-liquid contactors. In this work, an effective experimental technique for measuring local gas hold-up and interfacial area, as well as bubble size distribution, is discussed. The technique, hereafter referred to as Laser Induced Fluorescence with Shadow Analysis for Bubble Sizing (LIF-SABS) is based on laser sheet illumination of the gas-liquid dispersion and synchronized camera, i.e. on equipment typically available within PIV set-ups. The liquid phase is made fluorescent by a suitable dye, and an optical filter is placed in front of the camera optics, in order to allow only fluoresced light to reach the camera CCD. In this way bubbles intercepted by the laser sheet are clearly identified thanks to the neat shade resulting in the images. This allows excluding from subsequent analysis all bubbles visible in the images but not actually intercepted by the laser sheet, so resulting in better spatial resolution and data reliability. When trying to analyze image information the problem arises that bubble sizes are generally underestimated, due to the fact that the laser sheet randomly cuts bubbles over non-diametrical planes, leading to an apparent bubble size distribution even in the ideal case of single sized bubbles. Clearly in the case of bubbles with a size distribution the experimental information obtained is affected by the superposition of effects. A statistical correction for estimating local gas hold-up and specific interfacial area from relevant apparent data as obtained by laser sheet illumination and image analysis is discussed and applied to preliminary experimental data obtained in a gas-liquid stirred vessel

    Vortex shape in unbaffled stirred vessels: experimental study via digital image analysis

    Get PDF
    There is a growing interest in using unbaffled stirred tanks for addressing certain processing needs. In this work, digital image analysis coupled with a suitable shadowgraphy-based technique is used to investigate the shape of the free-surface vortex that forms in uncovered unbaffled stirred tanks. The technique is based on back-lighting the vessel and suitably averaging vortex shape over time. Impeller clearance from vessel bottom and tank filling level are varied to investigate their influence on vortex shape. A correlation is finally proposed to fully describe vortex shape also when the vortex encompasses the impeller

    Cryopreservation of Cortical Tissue Blocks for the Generation of Highly Enriched Neuronal Cultures

    Get PDF
    In this study, we outline a standardized protocol for the successful cryopreservation and thawing of cortical brain tissue blocks to generate highly enriched neuronal cultures. For this protocol the freezing medium used is 10% dimethyl sulfoxide (DMSO) diluted in Hank's Buffered Salt Solution (HBSS). Blocks of cortical tissue are transferred to cryovials containing the freezing medium and slowly frozen at -1°C/min in a rate-controlled freezing container. Post-thaw processing and dissociation of frozen tissue blocks consistently produced neuronal-enriched cultures which exhibited rapid neuritic growth during the first 5 days in culture and significant expansion of the neuronal network within 10 days. Immunocytochemical staining with the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal marker beta-tubulin class III, revealed high numbers of neurons and astrocytes in the cultures. Generation of neural precursor cell cultures after tissue block dissociation resulted in rapidly expanding neurospheres, which produced large numbers of neurons and astrocytes under differentiating conditions. This simple cryopreservation protocol allows for the rapid, efficient, and inexpensive preservation of cortical brain tissue blocks, which grants increased flexibility for later generation of neuronal, astrocyte, and neuronal precursor cell cultures

    Apparatus for synthesizing and separating synthesis products e.g. gaseous and liquid phases on bed, maintains heavier liquid phase at lower portion of first meatus due to gravity and lighter liquid phase at upper portion of meatus

    Get PDF
    NOVELTY - The apparatus has header that is set to make the heavier and lighter liquid phases flow along outer side surface of a third tube (8) as far as first closure element (13). The third tube is provided with second side openings for directly connecting the first and second meatus. The heavier liquid phase is maintained at lower portion of the first meatus due to gravity and lighter liquid phase is maintained at upper portion of the first meatus until the liquid phases fall into a fourth tube (9). The heavier liquid phase is collectible through a collection hole (12). USE - Apparatus e.g. reactor/separator for synthesizing and separating synthesis products e.g. gaseous phase and heavier and lighter liquid phases on catalytic bed, used in production of biodiesel. ADVANTAGE - Since heavier liquid phase is maintained at lower portion of the first meatus due to gravity and lighter liquid phase is maintained at upper portion of the first meatus, sedimentation separation of the liquid phases is improved. The structure of the apparatus is simplified and the apparatus is constructed easily. The efficacy and use of catalyst are maximized. DETAILED DESCRIPTION - The apparatus has synthesis module (M1) that is set with a first tube (1) which is provided with an opening at one end and closed at second end by a mesh (7). The first tube is adapted to contain a catalytic bed (6). A separation module (M2) is set to separate heavier and lighter liquid phases and gaseous phase originating from the synthesis module. A second tube (1') is arranged adjacent to second end of the first tube. A first closure element is provided with a through hole for sole passage of the second liquid and of the gaseous phase. A third tube is affixed to first end of second tube. A first meatus is set between second tube and the third tube. The fourth tube is set inside the third tube so as to define a second meatus between the third tube and the fourth tube. A separation zone is set between the heavier and lighter liquid phases. A collection hole is set in the second tube to collect the heavier liquid phase. The third tube is set with first side openings at first end, and is set with a header for collecting the liquid phases originating from the synthesis module. The first meatus is directly inserted into the third tube and subsequently into the fourth tube. A control system is set between the liquid phases, to check and maintain interface level below the upper end of the first side openings. The control system has interface level indicator that is connected to the second tube by second side holes envisaged in side surface of the second tube. One of the second side holes is arranged in proximity of the first closure element and other is positioned above the upper end of the first side openings. The protrusions are arranged along cylindrical side surface of the third tube, and are separated by spaces for passage of the liquid phases from the header to the first meatus. A redistribution module (M3) is set to redistribute the lighter liquid phase and gaseous phase originating from the fourth tube. A fifth tube (1") is arranged adjacent to second end of the second tube. The closure element is set with a central perforated area. A sixth tube (14) is set to descent and release of the gaseous phase. The central perforated area is provided with several holes for homogeneous distribution of lighter liquid phase downstream of the redistribution module. The sixth tube is affixed to a second closure element (15). The mesh is provided with a passage area. The synthesis module, separation module and redistribution module are vertically-stacked. An INDEPENDENT CLAIM is included for a method for synthesizing and separating synthesis products e.g. gaseous phase and heavier and lighter liquid phases on catalytic bed, involves synthesizing on a catalytic bed and producing the synthesis products. The liquid phases and gaseous phase are separated in the separation module

    Phenotype of apoptotic lymphocytes in children with Down syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Down syndrome (DS) is the most common and best-known chromosomal disorder and is associated with several other pathologic conditions including immunodeficiency which makes a significant contribution to morbidity and mortality. Various immunological theories and observations to explain the predisposition of individuals with DS to various infections have been published, one of which is increased apoptotic cells.</p> <p>Aim</p> <p>The aim of this study was to identify the effect of apoptosis on both types of cells of specific immune response (T and B lymphocytes) in children with DS using Annexin V staining of phosphatidyserine (PS) as a specific marker of early apoptosis.</p> <p>Subjects and methods</p> <p>The study included 17 children with karyotypically ascertained DS (7 males and 10 females). Their ages ranged from 4 months to 14 years with mean age of 5.7 ± 4.35 years. Seventeen age and sex matched healthy children were included in the study as controls. Patients or controls with infections were excluded from the study. Complete blood picture, immunophenotyping, analysis of apoptosis using Annexin V was done at National cancer Institute to all children included in this study.</p> <p>Results</p> <p>Although CBC, differential count, relative and absolute number of CD<sup>3+ </sup>and CD<sup>16+ </sup>did not show significant differences between DS children and control group, the relative and the absolute size of apoptotic CD<sup>3+ </sup>T lymphocytes, and the relative size of apoptotic CD<sup>19+ </sup>B lymphocytes were significantly higher in DS children than in controls. On the other hand, no significant difference was detected as regards the absolute size of CD<sup>19+ </sup>B lymphocytes in DS children and in controls</p> <p>Conclusion</p> <p>our finding of increased early apoptotic cells (especially T cells) in DS children may emphasize the fact that the function of cells- and not their number- is main mechanism responsible for the impairment of the immune system in DS children and may further add to the known fact that cellular immunity is more severely affected than humoral immunity in these children. Further studies on apoptotic cellular phenotype in larger number of DS are needed</p

    Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6–9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer’s disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar­ma­cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21
    • …
    corecore