5,083 research outputs found

    Time Scales for Viscous Flow, Atomic Transport, and Crystallization in the Liquid and Supercooled Liquid States of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5

    Get PDF
    The shear viscosity of liquid Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 has been measured. At the liquidus temperature we find an extremely high viscosity of 2.5 Pa s, favoring glass formation. At deep supercooling the time scales for the diffusion of small and medium sized atoms as reported in the literature decouple from the internal relaxation time as probed by our viscosity measurements. Similarly, crystallization from the supercooled liquid state can be described with an effective diffusivity that scales with the viscosity at high temperatures and is Arrhenius-like at deep supercooling

    Enhanced Pauli blocking of light scattering in a trapped Fermi gas

    Full text link
    Pauli blocking of spontaneous emission by a single excited-state atom has been predicted to be dramatic at low temperature when the Fermi energy EFE_\mathrm{F} exceeds the recoil energy ERE_\mathrm{R}. The photon scattering rate of a ground-state Fermi gas can also be suppressed by occupation of the final states accessible to a recoiling atom, however suppression is diminished by scattering events near the Fermi edge. We analyze two new approaches to improve the visibility of Pauli blocking in a trapped Fermi gas. Focusing the incident light to excite preferentially the high-density region of the cloud can increase the blocking signature by 14%, and is most effective at intermediate temperature. Spontaneous Raman scattering between imbalanced internal states can be strongly suppressed at low temperature, and is completely blocked for a final-state EF>4ERE_\mathrm{F} > 4 E_\mathrm{R} in the high imbalance limit.Comment: 12 pages, 8 figures. v4: to appear in Journal of Physics B: Atomic, Molecular, and Optical Physic

    The norm-1-property of a quantum observable

    Get PDF
    A normalized positive operator measure XE(X)X\mapsto E(X) has the norm-1-property if \no{E(X)}=1 whenever E(X)OE(X)\ne O. This property reflects the fact that the measurement outcome probabilities for the values of such observables can be made arbitrary close to one with suitable state preparations. Some general implications of the norm-1-property are investigated. As case studies, localization observables, phase observables, and phase space observables are considered.Comment: 14 page

    Sedimentology and kinematics of a large, retrogressive growth-fault system in Upper Carboniferous deltaic sediments, western Ireland

    Get PDF
    Growth faulting is a common feature of many deltaic environments and is vital in determining local sediment dispersal and accumulation, and hence in controlling the resultant sedimentary facies distribution and architecture. Growth faults occur on a range of scales, from a few centimetres to hundreds of metres, with the largest growth faults frequently being under-represented in outcrops that are often smaller than the scale of feature under investigation. This paper presents data from the exceptionally large outcrops of the Cliffs of Moher, western Ireland, where a growth-fault complex affects strata up to 60 m in thickness and extends laterally for 3 km. Study of this Namurian (Upper Carboniferous) growth-fault system enables the relationship between growth faulting and sedimentation to be detailed and permits reconstruction of the kinematic history of faulting. Growth faulting was initiated with the onset of sandstone deposition on a succession of silty mudstones that overlie a thin, marine shale. The decollement horizon developed at the top of the marine shale contact for the first nine faults, by which time aggradation in the hangingwall exceeded 60 m in thickness. After this time, failure planes developed at higher stratigraphic levels and were associated with smaller scale faults. The fault complex shows a dominantly landward retrogressive movement, in which only one fault was largely active at any one time. There is no evidence of compressional features at the base of the growth faults, thus suggesting open-ended slides, and the faults display both disintegrative and non-disintegrative structure. Thin-bedded, distal mouth bar facies dominate the hangingwall stratigraphy and, in the final stages of growth-fault movement, erosion of the crests of rollover structures resulted in the highest strata being restricted to the proximity of the fault. These upper erosion surfaces on the fault scarp developed erosive chutes that were cut parallel to flow and are downlapped by the distal hangingwall strata of younger growth faults

    Confined Quantum Time of Arrivals

    Full text link
    We show that formulating the quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding states that evolve to unitarily collapse at a given point at a definite time. For the spatially confined particle, we show that the problem admits a solution in the form of an eigenvalue problem of a compact and self-adjoint time of arrival operator derived by a quantization of the classical time of arrival, which is canonically conjugate with the Hamiltonian in closed subspace of the Hilbert space.Comment: Figures are now include

    Optical detection of a BCS transition of Lithium-6 in harmonic traps

    Full text link
    We study the detection of a BCS transition within a sample of Lithium--6 atoms confined in a harmonic trap. Using the local density approximation we calculate the pair correlation function in the normal and superfluid state at zero temperature. We show that the softening of the Fermi hole associated with a BCS transition leads to an observable increase in the intensity of off--resonant light scattered from the atomic cloud at small angles.Comment: 7 pages, 3 figures, submitted to Europhysics Letter

    A dilemma in representing observables in quantum mechanics

    Get PDF
    There are self-adjoint operators which determine both spectral and semispectral measures. These measures have very different commutativity and covariance properties. This fact poses a serious question on the physical meaning of such a self-adjoint operator and its associated operator measures.Comment: 10 page

    Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process

    Get PDF
    The accuracy of the Arthurs-Kelly model of a simultaneous measurement of position and momentum is analysed using concepts developed by Braginsky and Khalili in the context of measurements of a single quantum observable. A distinction is made between the errors of retrodiction and prediction. It is shown that the distribution of measured values coincides with the initial state Husimi function when the retrodictive accuracy is maximised, and that it is related to the final state anti-Husimi function (the P representation of quantum optics) when the predictive accuracy is maximised. The disturbance of the system by the measurement is also discussed. A class of minimally disturbing measurements is characterised. It is shown that the distribution of measured values then coincides with one of the smoothed Wigner functions described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final published versio
    corecore