60 research outputs found

    Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.

    Get PDF
    We have examined the effects of changes in extracellular ionic composition on cone and retinal pigment epithelium (RPE) retinomotor movements in cultured isolated teleost retinas. In vivo, the myoid portion of teleost cones contracts in the light and elongates in the dark; RPE pigment disperses in the light and aggregates in the dark. In vitro, cones of dark-adapted (DA) retinas cultured in constant darkness contracted spontaneously to their light-adapted (LA) positions if the culture medium contained greater than or equal to 10(-3)M Cao++. DA cones retained their long DA positions in a medium containing less than or equal to 10(-6)M Cao++. Low [Ca++]o (10(-5)-10(-7)M) also permitted darkness to induce cone elongation and RPE pigment aggregation. Light produced cone contraction even in the absence of Cao++, but the extent of contraction was reduced if [Ca++]o was less than 10(-3) M. Thus, full contraction appeared to require the presence of external Ca++. High [K+]o (greater than or equal to 27 mM) inhibited both light-induced and light-independent Ca++-induced cone contraction. However, low [Na+]o (3.5 mM) in the presence of less than or equal to 10(-6)M Cao++ did not mimic light onset by inducing cone contraction in the dark. High [K+]o also promoted dark-adaptive cone and RPE movements in LA retinas cultured in the light. All results obtained in high [K+]o were similar to those observed when DA or LA retinas were exposed to treatments that elevate cytoplasmic cyclic 3,5-adenosine monophosphate (cAMP) content

    Effects of cyclic adenosine 3,5-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation.

    Get PDF
    As a test of the hypothesis that cyclic nucleotides play a role in the regulation of retinomotor movements and disc shedding in the photoreceptor-pigment epithelial complex, we have used an in vitro eyecup preparation that sustains both disc shedding and cone retinomotor movements, Eyecups were prepared in white light from animals in which both shedding and cone movement had been blocked by 4 d of constant-light treatment. In eyecups incubated for 3 h in light, disc shedding was negligible and cones remained in the light-adapted (contracted) position. In eyecups incubated in darkness, however, a massive shedding response (dominated by rod photoreceptors) was induced, and at the same time cone photoreceptors elongated to their dark-adapted position. In eyecups incubated in light dbcAMP promoted cone elongation and thus mimicked darkness; the dbcAMP effect was potentiated by the phosphodiesterase inhibitors papaverine and 3-isobutylmethylxanthine. In eyecups incubated in darkness, on the other hand, both phosphodiesterase inhibitors and dbcAMP reduced the phagosome content of the pigment epithelium. The effects of dbcAMP on the cone elongation and rod shedding appear to be specific in that dbcGMP, adenosine, and adenosine 5-monophosphate had no significant effect. Our results suggest that cAMP plays a role in the regulation of both retinomotor movements and disc shedding

    Reactivation of contraction in detergent-lysed teleost retinal cones.

    Get PDF
    Teleost retinal cones contract in the light and elongate in the dark. In the green sunfish, Lepomis cyanellus, the necklike myoid region of the cone contracts from as much as 120 micrometers (midnight dark-adapted) to 6 micrometers in fully light-adapted state. When dark-adapted fish are exposed to light (1.4 lux), cone myoids contract with a linear rate of 1.5 +/- 0.1 micrometers/min. We report here that detergent-lysed motile models of teleost retinal cones exhibit calcium- and ATP-dependent reactivated contraction, with morphology and rate comparable to that observed in vivo. For reactivation studies isolated dark-adapted retinas were lysed with nonionic detergent Brij-58 (0.1-1.0%). In reactivation medium containing 10(-5) M free calcium and 4 mM ATP, the lysed cones contracted with normal morphology at in vivo rates (1.4 +/- 1 micrometer/min). Little contraction was observed if ATP or detergent was deleted from the medium or if free calcium levels were less than 10(-8) M. Ultrastructural examination of cone models lysed with 1% Brij-58 revealed that, in spite of extensive extraction of the cytoplasmic matrix, cytoskeletal components (thin filaments, intermediate filaments, microtubules) were still present. Thus we have produced extensively extracted motile models of teleost retinal cones which undergo calcium- and ATP-dependent reactivated contraction with normal morphology at physiological rate

    Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3,5-monophosphate.

    Get PDF
    In the teleost retina, the photoreceptors and retinal pigment epithelium (RPE) undergo extensive movements (called retinomotor movements) in response to changes in light conditions and to an endogenous circadian rhythm. Photoreceptor movements serve to reposition the light-receptive outer segments and are effected by changes in inner segment length. Melanin granule movements within the RPE cells provide a movable melanin screen for rod outer segments. In the dark (night), cones elongate, rods contract, and pigment granules aggregate to the base of the RPE cell; in the light (day), these movements are reversed. We report here that treatments that elevate cytoplasmic cyclic adenosine 3,5-monophosphate (cAMP) provoke retinomotor movements characteristic of nighttime dark adaptation, even in bright light at midday. To illustrate this response, we present a quantitative description of the effects of cyclic nucleotides on cone length in the green sunfish, Lepomis cyanellus. Cone elongation is induced when light-adapted retinas are exposed to exogenous cAMP analogues accompanied by phosphodiesterase (PDE) inhibitors (either by intraocular injection or in retinal organ culture). Cone movements is not affected by cyclic GMP analogies. Dose-response studies indicate that the extent, but not the rate, of cone elongation is proportional to the concentration of exogenous cAMP and analogue presented. As has been reported for other species, we find that levels of cAMP are significantly higher in dark- than in light-adapted green sunfish retinas. On the basis of these observations, we suggest that cAMP plays a role in the light and circadian regulation of teleost cone length

    Fascin 2b Is a Component of Stereocilia that Lengthens Actin-Based Protrusions

    Get PDF
    Stereocilia are actin-filled protrusions that permit mechanotransduction in the internal ear. To identify proteins that organize the cytoskeleton of stereocilia, we scrutinized the hair-cell transcriptome of zebrafish. One promising candidate encodes fascin 2b, a filamentous actin-bundling protein found in retinal photoreceptors. Immunolabeling of zebrafish hair cells and the use of transgenic zebrafish that expressed fascin 2b fused to green fluorescent protein demonstrated that fascin 2b localized to stereocilia specifically. When filamentous actin and recombinant fusion protein containing fascin 2b were combined in vitro to determine their dissociation constant, a Kd≈0.37 µM was observed. Electron microscopy showed that fascin 2b-actin filament complexes formed parallel actin bundles in vitro. We demonstrated that expression of fascin 2b or espin, another actin-bundling protein, in COS-7 cells induced the formation of long filopodia. Coexpression showed synergism between these proteins through the formation of extra-long protrusions. Using phosphomutant fascin 2b proteins, which mimicked either a phosphorylated or a nonphosphorylated state, in COS-7 cells and in transgenic hair cells, we showed that both formation of long filopodia and localization of fascin 2b to stereocilia were dependent on serine 38. Overexpression of wild-type fascin 2b in hair cells was correlated with increased stereociliary length relative to controls. These findings indicate that fascin 2b plays a key role in shaping stereocilia
    • …
    corecore