2,127 research outputs found
A nonperturbative Real-Space Renormalization Group scheme
Based on the original idea of the density matrix renormalization group
(DMRG), i.e. to include the missing boundary conditions between adjacent blocks
of the blocked quantum system, we present a rigorous and nonperturbative
mathematical formulation for the real-space renormalization group (RG) idea
invented by L.P. Kadanoff and further developed by K.G. Wilson. This is
achieved by using additional Hilbert spaces called auxiliary spaces in the
construction of each single isolated block, which is then named a superblock
according to the original nomenclature. On this superblock we define two maps
called embedding and truncation for successively integrating out the small
scale structure. Our method overcomes the known difficulties of the numerical
DMRG, i.e. limitation to zero temperature and one space dimension.Comment: 13 pages, 5 figures, late
Surface Critical Behavior of Binary Alloys and Antiferromagnets: Dependence of the Universality Class on Surface Orientation
The surface critical behavior of semi-infinite
(a) binary alloys with a continuous order-disorder transition and
(b) Ising antiferromagnets in the presence of a magnetic field is considered.
In contrast to ferromagnets, the surface universality class of these systems
depends on the orientation of the surface with respect to the crystal axes.
There is ordinary and extraordinary surface critical behavior for orientations
that preserve and break the two-sublattice symmetry, respectively. This is
confirmed by transfer-matrix calculations for the two-dimensional
antiferromagnet and other evidence.Comment: Final version that appeared in PRL, some minor stylistic changes and
one corrected formula; 4 pp., twocolumn, REVTeX, 3 eps fig
Conformal off-diagonal boundary density profiles on a semi-infinite strip
The off-diagonal profile phi(v) associated with a local operator (order
parameter or energy density) close to the boundary of a semi-infinite strip
with width L is obtained at criticality using conformal methods. It involves
the surface exponent x_phi^s and displays a simple universal behaviour which
crosses over from surface finite-size scaling when v/L is held constant to
corner finite-size scaling when v/L -> 0.Comment: 5 pages, 1 figure, IOP macros and eps
Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law
This work explores the use of a tree tensor network ansatz to simulate the
ground state of a local Hamiltonian on a two-dimensional lattice. By exploiting
the entropic area law, the tree tensor network ansatz seems to produce
quasi-exact results in systems with sizes well beyond the reach of exact
diagonalisation techniques. We describe an algorithm to approximate the ground
state of a local Hamiltonian on a L times L lattice with the topology of a
torus. Accurate results are obtained for L={4,6,8}, whereas approximate results
are obtained for larger lattices. As an application of the approach, we analyse
the scaling of the ground state entanglement entropy at the quantum critical
point of the model. We confirm the presence of a positive additive constant to
the area law for half a torus. We also find a logarithmic additive correction
to the entropic area law for a square block. The single copy entanglement for
half a torus reveals similar corrections to the area law with a further term
proportional to 1/L.Comment: Major rewrite, new version published in Phys. Rev. B with highly
improved numerical results for the scaling of the entropies and several new
sections. The manuscript has now 19 pages and 30 Figure
Critical behaviour near multiple junctions and dirty surfaces in the two-dimensional Ising model
We consider m two-dimensional semi-infinite planes of Ising spins joined
together through surface spins and study the critical behaviour near to the
junction. The m=0 limit of the model - according to the replica trick -
corresponds to the semi-infinite Ising model in the presence of a random
surface field (RSFI). Using conformal mapping, second-order perturbation
expansion around the weakly- and strongly-coupled planes limits and
differential renormalization group, we show that the surface critical behaviour
of the RSFI model is described by Ising critical exponents with logarithmic
corrections to scaling, while at multiple junctions (m>2) the transition is
first order. There is a spontaneous junction magnetization at the bulk critical
point.Comment: Old paper, for archiving. 6 pages, 1 figure, IOP macro, eps
Spatial Constraint Corrections to the Elasticity of dsDNA Measured with Magnetic Tweezers
In this paper, we have studied, within a discrete WLC model, the spatial
constraints in magnetic tweezers used in single molecule experiments. Two
elements are involved: first, the fixed plastic slab on which is stuck the
initial strand, second, the magnetic bead which pulls (or twists) the attached
molecule free end. We have shown that the bead surface can be replaced by its
tangent plane at the anchoring point, when it is close to the bead south pole
relative to the force. We are led to a model with two parallel repulsive
plates: the fixed anchoring plate and a fluctuating plate, simulating the bead,
in thermal equilibrium with the system. The bead effect is a slight upper shift
of the elongation, about four times smaller than the similar effect induced by
the fixed plate. This rather unexpected result, has been qualitatively
confirmed within the soluble Gaussian model. A study of the molecule elongation
versus the countour length exhibits a significant non-extensive behaviour. The
curve for short molecules (with less than 2 kbp) is well fitted by a straight
line, with a slope given by the WLC model, but it does not go through the
origin. The non-extensive offset gives a 15% upward shift to the elongation of
a 2 kbp molecule stretched by a 0.3 pN force.Comment: 28 pages, 6 figures An explanatory figure has been added. The
physical interpretation of the results has been made somewhat more
transparen
Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance
Mesoscopic particles immersed in a critical fluid experience long-range
Casimir forces due to critical fluctuations. Using field theoretical methods,
we investigate the Casimir interaction between two spherical particles and
between a single particle and a planar boundary of the fluid. We exploit the
conformal symmetry at the critical point to map both cases onto a highly
symmetric geometry where the fluid is bounded by two concentric spheres with
radii R_- and R_+. In this geometry the singular part of the free energy F only
depends upon the ratio R_-/R_+, and the stress tensor, which we use to
calculate F, has a particularly simple form. Different boundary conditions
(surface universality classes) are considered, which either break or preserve
the order-parameter symmetry. We also consider profiles of thermodynamic
densities in the presence of two spheres. Explicit results are presented for an
ordinary critical point to leading order in epsilon=4-d and, in the case of
preserved symmetry, for the Gaussian model in arbitrary spatial dimension d.
Fundamental short-distance properties, such as profile behavior near a surface
or the behavior if a sphere has a `small' radius, are discussed and verified.
The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B
51, 13717 (1995
Local functional models of critical correlations in thin-films
Recent work on local functional theories of critical inhomogeneous fluids and
Ising-like magnets has shown them to be a potentially exact, or near exact,
description of universal finite-size effects associated with the excess
free-energy and scaling of one-point functions in critical thin films. This
approach is extended to predict the two-point correlation function G in
critical thin-films with symmetric surface fields in arbitrary dimension d. In
d=2 we show there is exact agreement with the predictions of conformal
invariance for the complete spectrum of correlation lengths as well as the
detailed position dependence of the asymptotic decay of G. In d=3 and d>=4 we
present new numerical predictions for the universal finite-size correlation
length and scaling functions determining the structure of G across the
thin-film. Highly accurate analytical closed form expressions for these
universal properties are derived in arbitrary dimension.Comment: 4 pages, 1 postscript figure. Submitted to Phys Rev Let
Surface crossover exponent for branched polymers in two dimensions
Transfer-matrix methods on finite-width strips with free boundary conditions
are applied to lattice site animals, which provide a model for randomly
branched polymers in a good solvent. By assigning a distinct fugacity to sites
along the strip edges, critical properties at the special (adsorption) and
ordinary transitions are assessed. The crossover exponent at the adsorption
point is estimated as , consistent with recent
predictions that exactly for all space dimensionalities.Comment: 10 pages, LaTeX with Institute of Physics macros, to appear in
Journal of Physics
Using AI/expert system technology to automate planning and replanning for the HST servicing missions
This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission
- …