87 research outputs found

    Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors

    Get PDF
    With the widespread application of immune checkpoint blocking antibodies (ICBs) for the treatment of advanced cancer, immunotherapy has proven to be capable of yielding unparalleled clinical results. However, despite the initial success of ICB-treatment, still a minority of patients experience durable responses to ICB therapy. A plethora of mechanisms underlie ICB resistance ranging from low immunogenicity, inadequate generation or recruitment of tumor-specific T cells or local suppression by stromal cells to acquired genetic alterations leading to immune escape. Increasing the response rates to ICBs requires insight into the mechanisms underlying resistance and the subsequent design of rational therapeutic combinations on a per patient basis. In this review, we aim to establish order into the mechanisms governing primary and secondary ICB resistance, offer therapeutic options to circumvent different modes of resistance and plea for a personalized medicine approach to maximize immunotherapeutic benefit for all cancer patients

    Applied aspects of pineapple flowering

    Full text link

    Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model

    Get PDF
    BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is notoriously resistant to treatment including checkpoint-blockade immunotherapy. We hypothesized that a bimodal treatment approach consisting of dendritic cell (DC) vaccination to prime tumor-specific T cells, and a strategy to reprogram the desmoplastic tumor microenvironment (TME) would be needed to break tolerance to these pancreatic cancers. As a proof-of-concept, we investigated the efficacy of combined DC vaccination with CD40-agonistic antibodies in a poorly immunogenic murine model of PDAC. Based on the rationale that mesothelioma and pancreatic cancer share a number of tumor associated antigens, the DCs were loaded with either pancreatic or mesothelioma tumor lysates. METHODS: Immune-competent mice with subcutaneously or orthotopically growing KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) PDAC tumors were vaccinated with syngeneic bone marrow-derived DCs loaded with either pancreatic cancer (KPC) or mesothelioma (AE17) lysate and consequently treated with FGK45 (CD40 agonist). Tumor progression was monitored and immune responses in TME and lymphoid organs were analyzed using multicolor flow cytometry and NanoString analyzes. RESULTS: Mesothelioma-lysate loaded DCs generated cross-reactive tumor-antigen-specific T-cell responses to pancreatic cancer and induced delayed tumor outgrowth when provided as prophylactic vaccine. In established disease, combination with stimulating CD40 antibody was necessary to improve survival, while anti-CD40 alone was ineffective. Extensive analysis of the TME showed that anti-CD40 monotherapy did improve CD8 +T cell infiltration, but these essential effector cells displayed hallmarks of exhaustion, including PD-1, TIM-3 and NKG2A. Combination therapy induced a strong change in tumor transcriptome and mitigated the expression of inhibitory markers on CD8 +T cells. CONCLUSION: These results demonstrate the potency of DC therapy in combination with CD40-stimulation for the treatment of pancreatic cancer and provide directions for near future clinical trials

    Effect of ethylene on the phototropic response ofAvena andOryza coleoptiles

    No full text
    corecore