5,032 research outputs found

    The Invincible (1758) site: an integrated geophysical assessment

    No full text
    Chirp sub-bottom profiler and repeat sidescan sonar imaging of the Invincible wreck site (1758) in the Solent (U.K.), interpretation, and implications for management of the site

    Genomic variations associated with attenuation in Mycobacterium avium subsp paratuberculosis vaccine strains

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP) whole cell vaccines have been widely used tools in the control of Johne's disease in animals despite being unable to provide complete protection. Current vaccine strains derive from stocks created many decades ago; however their genotypes, underlying mechanisms and relative degree of their attenuation are largely unknown. RESULTS: Using mouse virulence studies we confirm that MAP vaccine strains 316 F, II and 2e have diverse but clearly attenuated survival and persistence characteristics compared with wild type strains. Using a pan genomic microarray we characterise the genomic variations in a panel of vaccine strains sourced from stocks spanning over 40 years of maintenance. We describe multiple genomic variations specific for individual vaccine stocks in both deletion (26-32 Kbp) and tandem duplicated (11-40 Kbp) large variable genomic islands and insertion sequence copy numbers. We show individual differences suitable for diagnostic differentiation between vaccine and wild type genotypes and provide evidence for functionality of some of the deleted MAP-specific genes and their possible relation to attenuation. CONCLUSIONS: This study shows how culture environments have influenced MAP genome diversity resulting in large tandem genomic duplications, deletions and transposable element activity. In combination with classical selective systematic subculture this has led to fixation of specific MAP genomic alterations in some vaccine strain lineages which link the resulting attenuated phenotypes with deficiencies in high reactive oxygen species handling

    Fault and magmatic interaction within Iceland's western rift over the last 9kyr

    Get PDF
    We present high-resolution 'Chirp' sub-bottom profiler data from Thingvallavatn, a lake in Iceland's western rift zone. These data are combined with stratigraphic constraints from sediment cores to show that movement on normal faults since 9 ka are temporally correlated with magmatic events, indicating that movements were controlled by episodic dyke intrusion. Sediment depo-centres and the focus of subsidence migrated westwards over 3-4 kyr towards the locus of subsequent brittle failure. We interpret this subsidence as related to dyke intrusion a few km along strike, originating from the Hengill volcanic system, which occurred prior to major dyking, faulting and subsidence within the lake at 1.9 ka

    Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy

    Full text link
    The temperature dependence of phonon excitations and the presence of spin phonon coupling in polycrystalline Pr2NiMnO6 samples were studied using micro-Raman spectroscopy and magnetometry. Magnetic properties show a single ferromagnetic-to-paramagnetic transition at 228 K and a saturation magnetization close to 4.95 \muB/f.u.. Three distinct Raman modes at 657, 642, and 511 cm-1 are observed. The phonon excitations show a clear hardening due to anharmonicity from 300 K down to 10 K. Further, temperature dependence of the 657 cm-1 mode shows only a small softening. This reflects the presence of a relatively weak spin-phonon coupling in Pr2NiMnO6 contrary to other double perovskites previously studied.Comment: 10 pages, 4 fig

    Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: Understanding when, how and why ligament failure occurs

    Get PDF
    OBJECTIVES: Ankle sprains due to landing on an opponent's foot are common in basketball. There is no analysis to date that provides a quantification of this injury mechanism. The aim of this study was to quantify the kinematics of this specific injury mechanism and relate this to lateral ankle ligament biomechanics. DESIGN: Case series. METHODS: The model-based image-matching technique was used to quantify calcaneo-fibular-talar kinematics during four ankle inversion sprain injury incidents in televised NBA basketball games. The four incidents follow the same injury pattern in which the players of interest step onto an opponent's foot with significant inversion and a diagnosed ankle injury. A geometric analysis was performed to calculate the in vivo ligament strains and strain rates for the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL). RESULTS: Despite the controlled selection of cases, the results show that there are two distinct injury mechanisms: sudden inversion and internal rotation with low levels of plantarflexion; and a similar mechanism without internal rotation. The first of these mechanisms results in high ATFL and CFL strains, whereas the second of these strains the CFL in isolation. CONCLUSIONS: The injury mechanism combined with measures of the ligament injury in terms of percentage of strain to failure correlate directly with the severity of the injury quantified by return-to-sport. The opportunity to control excessive internal rotation through proprioceptive training and/or prophylactic footwear or bracing could be utilised to reduce the severity of common ankle injuries in basketball

    Influence of lattice distortion on the Curie temperature and spin-phonon coupling in LaMn0.5_{0.5}Co0.5_{0.5}O3_{3}

    Full text link
    Two distinct ferromagnetic phases of LaMn0.5_{0.5}Co0.5_{0.5}O3_{3} having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature Tc\textit{T}_{c} is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn - O - Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in Tc\textit{T}_{c}. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the Tc\textit{T}_{c}. Electrical transport properties of both the phases have been investigated based on the lattice distortion.Comment: 9 figure

    On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems

    Get PDF
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated labelled calculus

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems
    corecore